Pesticide use and ultraviolet-B (UVB) radiation have both been suggested to adversely affect amphibians; however, little is known about their interactive effects. One potential adverse interaction could involve pesticide-induced dysregulation of DNA repair pathways, resulting in greater numbers of DNA photoadducts from UVB exposure. In the present study, we investigated the interactive effects of UVB radiation and two common pesticides (endosulfan and alpha-cypermethrin) on induction of DNA photo-adducts and expression of DNA damage and repair related genes in African clawed frog (Xenopus laevis) embryos. We examined 13 genes that are, collectively, involved in stress defense, cell cycle arrest, nucleotide excision repair (NER), base excision repair, mismatch repair, DNA repair regulation, and apoptosis. We exposed X. laevis embryos to 0, 25, and 50 mu g/L endosulfan or 0, 2.5, and 5.0 mu g/L alpha-cypermethrin for 96 h, with environmentally relevant exposures of UVB radiation during the last 7 h of the 96 h exposure. We measured the amount of cyclobutane pyrimidine dimers (CPDs) and mRNA abundance of the 13 genes among treatments including control, pesticide only, UVB only, and UVB and pesticide co-exposures. Each of the co-exposure scenarios resulted in elevated CPD levels compared to UVB exposure alone, suggesting an inhibitory effect of endosulfan and alpha-cypermethrin on CPD repair. This is attributed to results indicating that alpha-cypermethrin and endosulfan reduced mRNA abundance of XPA and HR23B, respectively, to levels that may affect the initial recognition of DNA lesions. In contrast, both pesticides increased transcript abundance of CSA and MUTL. In addition, mRNA abundance of HSP70 and GADD45 alpha were increased by endosulfan and mRNA abundance of XPG was increased by alpha-cypermethrin. XPC, HR23B, XPG, and GADD45 alpha exhibited elevated mRNA concentrations whereas there was a reduction in MUTL transcript concentrations in UVB-alone treatments. It appeared that even though expression of XPC and CSA were induced by exposure to UVB or pesticides, XPA was the limiting factor in the NER pathway. Our results suggest that pesticides may increase the accumulation of UVB-induced DNA photo-adducts and one likely mechanism is the alteration of critical NER gene expression. The present study provides important implications for evaluating the combined risks of pesticide usage and potentially increasing UVB radiation in aquatic ecosystems. (C) 2014 Elsevier B.V. All rights reserved.