Extensive ssDNA end formation at DNA double-strand breaks in non-homologous end-joining deficient cells during the S phase

被引:14
|
作者
Karlsson, Karin H. [1 ]
Stenerlow, Bo [1 ]
机构
[1] Uppsala Univ, Div Biomed Radiat Sci, Dept Oncol Radiol & Clin Immunol, Rudbeck Lab, SE-75185 Uppsala, Sweden
来源
BMC MOLECULAR BIOLOGY | 2007年 / 8卷
关键词
D O I
10.1186/1471-2199-8-97
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Efficient and correct repair of DNA damage, especially DNA double-strand breaks, is critical for cellular survival. Defects in the DNA repair may lead to cell death or genomic instability and development of cancer. Non-homologous end-joining (NHEJ) is the major repair pathway for DNA double-strand breaks in mammalian cells. The ability of other repair pathways, such as homologous recombination, to compensate for loss of NHEJ and the ways in which contributions of different pathways are regulated are far from fully understood. Results: In this report we demonstrate that long single-stranded DNA (ssDNA) ends are formed at radiation-induced DNA double-strand breaks in NHEJ deficient cells. At repair times >= 1 h, processing of unrejoined DNA double-strand breaks generated extensive ssDNA at the DNA ends in cells lacking the NHEJ protein complexes DNA-dependent protein kinase (DNA-PK) or DNA Ligase IV/XRCC4. The ssDNA formation was cell cycle dependent, since no ssDNA ends were observed in G(1)-synchronized NHEJ deficient cells. Furthermore, in wild type cells irradiated in the presence of DNA-PKcs ( catalytic subunit of DNA-PK) inhibitors, or in DNA-PKcs deficient cells complemented with DNA-PKcs mutated in six autophosphorylation sites (ABCDE), no ssDNA was formed. The ssDNA generation also greatly influences DNA double-strand break quantification by pulsed-field gel electrophoresis, resulting in overestimation of the DNA double-strand break repair capability in NHEJ deficient cells when standard protocols for preparing naked DNA (i.e., lysis at 50 C) are used. Conclusion: We provide evidence that DNA Ligase IV/XRCC4 recruitment by DNA-PK to DNA double-strand breaks prevents the formation of long ssDNA ends at double-strand breaks during the S phase, indicating that NHEJ components may downregulate an alternative repair process where ssDNA ends are required.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Repairing DNA double-strand breaks by the prokaryotic non-homologous end-joining pathway
    Brissett, Nigel C.
    Doherty, Aidan J.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2009, 37 : 539 - 545
  • [2] One end to rule them all: Non-homologous end-joining and homologous recombination at DNA double-strand breaks
    Ensminger, Michael
    Loebrich, Markus
    BRITISH JOURNAL OF RADIOLOGY, 2020, 93 (1115):
  • [3] Double-strand breaks repair by non-homologous DNA end joining in mammalian cells
    Malinowski, Mariusz
    Pastwa, Elzbieta
    CURRENT GENOMICS, 2006, 7 (05) : 311 - 322
  • [4] Molecular Mechanism of Protein Assembly on DNA Double-strand Breaks in the Non-homologous End-joining Pathway
    Yano, Ken-ichi
    Morotomi-Yano, Keiko
    Adachi, Noritaka
    Akiyama, Hidenori
    JOURNAL OF RADIATION RESEARCH, 2009, 50 (02) : 97 - 108
  • [5] Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining
    Mahaney, Brandi L.
    Meek, Katheryn
    Lees-Miller, Susan P.
    BIOCHEMICAL JOURNAL, 2009, 417 : 639 - 650
  • [6] Inhibiting DNA-PKcs in a non-homologous end-joining pathway in response to DNA double-strand breaks
    Dong, Jun
    Zhang, Tian
    Ren, Yufeng
    Wang, Zhenyu
    Ling, Clifton C.
    He, Fuqiu
    Li, Gloria C.
    Wang, Chengtao
    Wen, Bixiu
    ONCOTARGET, 2017, 8 (14) : 22662 - 22673
  • [7] Sirtuin inhibition increases the rate of non-homologous end-joining of DNA double strand breaks
    Wojewodzka, Maria
    Kruszewski, Marcin
    Buraczewska, Iwona
    Xu, Weizheng
    Massuda, Edmond
    Zhang, Jie
    Szumiel, Irena
    ACTA BIOCHIMICA POLONICA, 2007, 54 (01) : 63 - 69
  • [8] Repair of DNA double strand breaks by non-homologous end joining
    Lees-Miller, SP
    Meek, K
    BIOCHIMIE, 2003, 85 (11) : 1161 - 1173
  • [9] The Non-homologous End-Joining (NHEJ) Pathway for the Repair of DNA Double-Strand Breaks: I. A Mathematical Model
    Taleei, Reza
    Nikjoo, Hooshang
    RADIATION RESEARCH, 2013, 179 (05) : 530 - 539
  • [10] Modelling Heterogeneous Anomalous Dynamics of Radiation-Induced Double-Strand Breaks in DNA during Non-Homologous End-Joining Pathway
    Korabel, Nickolay
    Warmenhoven, John W.
    Henthorn, Nicholas T.
    Ingram, Samuel
    Fedotov, Sergei
    Heaven, Charlotte J.
    Kirkby, Karen J.
    Taylor, Michael J.
    Merchant, Michael J.
    ENTROPY, 2024, 26 (06)