ADG: automated generation and evaluation of many-body diagrams III. Bogoliubov in-medium similarity renormalization group formalism

被引:8
|
作者
Tichai, A. [1 ,2 ,3 ]
Arthuis, P. [1 ,2 ]
Hergert, H. [4 ,5 ]
Duguet, T. [6 ,7 ]
机构
[1] Tech Univ Darmstadt, Dept Phys, D-64289 Darmstadt, Germany
[2] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany
[3] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany
[4] Michigan State Univ, NSCL FRIB Lab, E Lansing, MI 48824 USA
[5] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[6] Univ Paris Saclay, CEA, IRFU, F-91191 Gif Sur Yvette, France
[7] Katholieke Univ Leuven, Inst Kern & Stralingsfys, B-3001 Leuven, Belgium
来源
EUROPEAN PHYSICAL JOURNAL A | 2022年 / 58卷 / 01期
基金
美国国家科学基金会;
关键词
PERTURBATION-THEORY; SHELL-MODEL; NUCLEI;
D O I
10.1140/epja/s10050-021-00621-6
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The goal of the present paper is twofold. First, a novel expansion many-body method applicable to superfluid open-shell nuclei, the so-called Bogoliubov in-medium similarity renormalization group (BIMSRG) theory, is formulated. This generalization of standard single-reference IMSRG theory for closed-shell systems parallels the recent extensions of coupled cluster, self-consistent Green's function or many-body perturbation theory. Within the realm of IMSRG theories, BIMSRG provides an interesting alternative to the already existing multi-reference IMSRG (MR-IMSRG) method applicable to open-shell nuclei. The algebraic equations for low-order approximations, i.e., BIMSRG(1) and BIMSRG(2), can be derived manually without much difficulty. However, such a methodology becomes already impractical and error prone for the derivation of the BIMSRG(3) equations, which are eventually needed to reach high accuracy. Based on a diagrammatic formulation of BIMSRG theory, the second objective of the present paper is thus to describe the third version (v3.0) of the ADG code that automatically (1) generates all valid BIMSRG(n) diagrams and (2) evaluates their algebraic expressions in a matter of seconds. This is achieved in such a way that equations can easily be retrieved for both the flow equation and the Magnus expansion formulations of BIMSRG. Expanding on this work, the first future objective is to numerically implement BIMSRG(2) (eventually BIMSRG(3)) equations and perform ab initio calculations of mid-mass open-shell nuclei.
引用
收藏
页数:18
相关论文
共 12 条
  • [1] ADG: automated generation and evaluation of many-body diagramsIII. Bogoliubov in-medium similarity renormalization group formalism
    A. Tichai
    P. Arthuis
    H. Hergert
    T. Duguet
    The European Physical Journal A, 2022, 58
  • [2] ADG: Automated generation and evaluation of many-body diagrams I. Bogoliubov many-body perturbation theory
    Arthuis, P.
    Duguet, T.
    Tichai, A.
    Lasseri, R. -D.
    Ebran, J. -P.
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 240 : 202 - 227
  • [3] ADG: Automated generation and evaluation of many-body diagrams II. Particle-number projected Bogoliubov many-body perturbation theory
    Arthuis, P.
    Tichai, A.
    Ripoche, J.
    Duguet, T.
    COMPUTER PHYSICS COMMUNICATIONS, 2021, 261
  • [5] In-medium similarity renormalization group with three-body operators
    Heinz, M.
    Tichai, A.
    Hoppe, J.
    Hebeler, K.
    Schwenk, A.
    PHYSICAL REVIEW C, 2021, 103 (04)
  • [6] Evolution of Nuclear Many-Body Forces with the Similarity Renormalization Group
    Jurgenson, E. D.
    Navratil, P.
    Furnstahl, R. J.
    PHYSICAL REVIEW LETTERS, 2009, 103 (08)
  • [7] Evolving nuclear many-body forces with the similarity renormalization group
    Jurgenson, E. D.
    Navratil, P.
    Furnstahl, R. J.
    PHYSICAL REVIEW C, 2011, 83 (03):
  • [8] Similarity renormalization group and many-body effects in multiparticle systems
    Launey, Kristina D.
    Dytrych, Tomas
    Draayer, Jerry P.
    PHYSICAL REVIEW C, 2012, 85 (04):
  • [9] Fixed Points of the Similarity Renormalization Group and the Nuclear Many-Body Problem
    Ruiz Arriola, E.
    Szpigel, S.
    Timoteo, V. S.
    FEW-BODY SYSTEMS, 2014, 55 (8-10) : 971 - 975
  • [10] A driven similarity renormalization group approach to quantum many-body problems
    Evangelista, Francesco A.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (05):