A Probabilistic Model for Collaborative Filtering

被引:3
|
作者
Lin, Zuoquan [1 ]
机构
[1] Peking Univ, Sch Math Sci, Dept Informat Sci, Beijing, Peoples R China
关键词
recommender system; collaborative filtering; hidden Markov model; TIME; ALGORITHM;
D O I
10.1145/3326467.3326472
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a probabilistic model that uses the early data to generate the prior distribution and the recent data to capture the change of the states of both users and items in collaborative filtering system. It keeps updating every time it receives new data and has a constant limit of the time cost of every updating, which is suitable to deal with large scale data for online recommendation. Experiments on real datasets show the improvement performance of our model over the existing time-aware recommender systems.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Probabilistic Latent Factor Model for Collaborative Filtering with Bayesian Inference
    Fang, Jiansheng
    Zhang, Xiaoqing
    Hu, Yan
    Xu, Yanwu
    Yang, Ming
    Liu, Jiang
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 73 - 80
  • [2] Probabilistic model estimation for collaborative filtering based on items attributes
    Kim, BM
    Li, Q
    [J]. IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2004), PROCEEDINGS, 2004, : 185 - 191
  • [3] Probabilistic relevance ranking for collaborative filtering
    Wang, Jun
    Robertson, Stephen
    de Vries, Arjen P.
    Reinders, Marcel J. T.
    [J]. INFORMATION RETRIEVAL, 2008, 11 (06): : 477 - 497
  • [4] Probabilistic relevance ranking for collaborative filtering
    Jun Wang
    Stephen Robertson
    Arjen P. de Vries
    Marcel J. T. Reinders
    [J]. Information Retrieval, 2008, 11 : 477 - 497
  • [5] Collaborative Filtering Using Probabilistic Matrix Factorization and a Bayesian Nonparametric Model
    Sherif, Nurudeen
    Zhang, Gongxuan
    [J]. 2017 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), 2017, : 396 - 401
  • [6] A Transfer Probabilistic Collective Factorization Model to Handle Sparse Data in Collaborative Filtering
    Jing, How
    Liang, An-Chun
    Lin, Shou-De
    Tsao, Yu
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2014, : 250 - 259
  • [7] FLAME: A Probabilistic Model Combining Aspect Based Opinion Mining and Collaborative Filtering
    Wu, Yao
    Ester, Martin
    [J]. WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2015, : 199 - 208
  • [8] Including item characteristics in the probabilistic latent semantic analysis model for collaborative filtering
    Kagie, Martijn
    van der Loos, Matthijs
    van Wezel, Michiel
    [J]. AI COMMUNICATIONS, 2009, 22 (04) : 249 - 265
  • [9] A Probabilistic Semantic Based Mixture Collaborative Filtering
    Weng, Linkai
    Zhang, Yaoxue
    Zhou, Yuezhi
    Yang, Laurance T.
    Tian, Pengwei
    Zhong, Ming
    [J]. UBIQUITOUS INTELLIGENCE AND COMPUTING, PROCEEDINGS, 2009, 5585 : 377 - +
  • [10] Probabilistic memory-based collaborative filtering
    Yu, K
    Schwaighofer, A
    Tresp, V
    Xu, XW
    Kriegel, HP
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2004, 16 (01) : 56 - 69