Nanomembrane folding origami: Geometry control and micro-machine applications

被引:3
|
作者
Zong, Yang [1 ,2 ]
Zhang, Xinyuan [1 ,2 ]
Wu, Yue [1 ,2 ]
Wang, Yang [1 ,2 ]
Liu, Chang [1 ,2 ]
Xu, Borui [1 ,3 ,4 ]
Huang, Gaoshan [1 ,2 ,4 ]
Cui, Jizhai [1 ,2 ,4 ]
Mei, Yongfeng [1 ,2 ,3 ,4 ]
机构
[1] Fudan Univ, Dept Mat Sci, State Key Lab ASIC & Syst, 220 Handan Rd, Shanghai 200433, Peoples R China
[2] Fudan Univ, Int Inst Intelligent Nanorobots & Nanosyst, 2005 Songhu Rd, Shanghai 200438, Peoples R China
[3] Fudan Univ, Inst Optoelect, Shanghai Frontiers Sci Res Base Intelligent Optoe, 220 Handan Rd, Shanghai 200433, Peoples R China
[4] Fudan Univ, Yiwu Res Inst, Chengbei Rd, Yiwu City 322000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Folding origami; Liquid-triggered delamination; Strain engineering; Magnetic manipulation; Micro-machine; ACTUATION; DESIGN;
D O I
10.1016/j.pnsc.2021.09.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Three-dimensional (3D) microstructures have important applications in a wide range of engineering fields. A strategy of nanomembrane folding origami with microdroplet-guided intercalation and strain engineering to construct complex 3D microstructures for micro-machine applications is proposed in the present investigation. The results showed that nanomembranes were released by the microdroplet intercalation and subsequently fold up as creases, or remain flat as facets, depending on the strain design configurations. The 3D geometry can be controlled by the crease design and by an externally applied magnetic field. Moreover, this folding strategy is used to construct magnetic micro-mirror arrays, magnetic micro-robots, and a twin-jet motor platform, showing potential micro-machine applications in optical micro-devices and robotics. This strategy offers a simple, precise, and designable method of folding 3D microstructures for fundamental research and practical applications.
引用
收藏
页码:865 / 871
页数:7
相关论文
共 50 条
  • [1] Nanomembrane folding origami: Geometry control and micro-machine applications
    Yang Zong
    Xinyuan Zhang
    Yue Wu
    Yang Wang
    Chang Liu
    Borui Xu
    Gaoshan Huang
    Jizhai Cui
    Yongfeng Mei
    Progress in Natural Science:Materials International, 2021, 31 (06) : 865 - 871
  • [2] Packaging the micro-machine
    Glenn, TP
    Webster, S
    2000 HD INTERNATIONAL CONFERENCE ON HIGH-DENSITY INTERCONNECT AND SYSTEMS PACKAGING, 2000, 4217 : 93 - 97
  • [3] Spiral-type micro-machine for medical applications
    Ishiyama, K
    Arai, KI
    Sendoh, M
    Yamazaki, A
    MHS 2000: PROCEEDINGS OF THE 2000 INTERNATIONAL SYMPOSIUM ON MICROMECHATRONICS AND HUMAN SCIENCE, 2000, : 65 - 69
  • [4] Micro-machine and micro-fabrication technology
    Jixie Kexue Yu Jishu, 3 (503):
  • [5] Laser fabrication technology for micro-machine
    Chen, JM
    Chen, T
    Wang, XB
    Zuo, TC
    MEMS/MOEMS TECHNOLOGIES AND APPLICATIONS, 2002, 4928 : 93 - 97
  • [6] Laser driven micro-machine elements
    Friese, M.E.J.
    Rubinsztein-Dunlop, H.
    Gold, J.
    Hagberg, P.
    IQEC, International Quantum Electronics Conference Proceedings, 1999,
  • [7] A TENSILE MICRO-MACHINE FUNCTIONING AT LOW TEMPERATURES
    CONTE, RR
    VONSTEBU.J
    REVUE DE PHYSIQUE APPLIQUEE, 1969, 4 (01): : 70 - &
  • [8] Wireless micro-machine with magnetic thin film
    Yamazaki, A
    Sendoh, M
    Ishiyama, K
    Arai, KI
    Ryutaro, R
    Nakano, M
    Fukunaga, H
    MHS2003: PROCEEDINGS OF 2003 INTERNATIONAL SYMPOSIUM ON MICROMECHATRONICS AND HUMAN SCIENCE, 2003, : 39 - 44
  • [9] Swimming micro-machine driven by magnetic torque
    Ishiyama, K
    Sendoh, M
    Yamazaki, A
    Arai, KI
    SENSORS AND ACTUATORS A-PHYSICAL, 2001, 91 (1-2) : 141 - 144
  • [10] Fully integrated micro-machine laser is tunable
    Anon
    2001, PennWell Publishing Co. (37):