Survey on the application of deep learning in algorithmic trading

被引:6
|
作者
Wang, Yongfeng [1 ]
Yan, Guofeng [1 ]
机构
[1] Guangzhou Univ, Sch Comp Sci & Cyber Engn, Guangzhou, Peoples R China
来源
关键词
d eep learning; algorithmic trading; t rading strategy; price prediction; arbitrage; CONVOLUTIONAL NEURAL-NETWORKS; PREDICTION; LSTM;
D O I
10.3934/DSFE.2021019
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Algorithmic trading is one of the most concerned directions in financial applications. Compared with traditional trading strategies, algorithmic trading applications perform forecasting and arbitrage with higher efficiency and more stable performance. Numerous studies on algorithmic trading models using deep learning have been conducted to perform trading forecasting and analysis. In this article, we firstly summarize several deep learning methods that have shown good performance in algorithmic trading applications, and briefly introduce some applications of deep learning in algorithmic trading. We then try to provide the latest snapshot application for algorithmic trading based on deep learning technology, and show the different implementations of the developed algorithmic trading model. Finally, some possible research issues are suggested in the future. The prime objectives of this paper are to provide a comprehensive research progress of deep learning applications in algorithmic trading, and benefit for subsequent research of computer program trading systems.
引用
收藏
页码:345 / 361
页数:17
相关论文
共 50 条
  • [1] An application of deep reinforcement learning to algorithmic trading
    Theate, Thibaut
    Ernst, Damien
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 173
  • [2] Deep Robust Reinforcement Learning for Practical Algorithmic Trading
    Li, Yang
    Zheng, Wanshan
    Zheng, Zibin
    IEEE ACCESS, 2019, 7 : 108014 - 108022
  • [3] ALGORITHMIC TRADING WITH LEARNING
    Cartea, Alvaro
    Jaimungal, Sebastian
    Kinzebulatov, Damir
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2016, 19 (04)
  • [4] Sentiment and Knowledge Based Algorithmic Trading with Deep Reinforcement Learning
    Nan, Abhishek
    Perumal, Anandh
    Zaiane, Osmar R.
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2022, PT I, 2022, 13426 : 167 - 180
  • [5] Algorithmic trading using combinational rule vector and deep reinforcement learning
    Huang, Zhen
    Li, Ning
    Mei, Wenliang
    Gong, Wenyong
    APPLIED SOFT COMPUTING, 2023, 147
  • [6] Algorithmic trading using continuous action space deep reinforcement learning
    Majidi, Naseh
    Shamsi, Mahdi
    Marvasti, Farokh
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 235
  • [7] Deep Reinforcement Learning for Trading-A Critical Survey
    Millea, Adrian
    DATA, 2021, 6 (11)
  • [8] A deep Q-learning based algorithmic trading system for commodity futures markets
    Massahi, Mahdi
    Mahootchi, Masoud
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [9] Optimal Action Space Search: an Effective Deep Reinforcement Learning Method for Algorithmic Trading
    Duan, Zhongjie
    Chen, Cen
    Cheng, Dawei
    Liang, Yuqi
    Qian, Weining
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 406 - 415
  • [10] A multi-agent deep reinforcement learning framework for algorithmic trading in financial markets
    Shavandi, Ali
    Khedmati, Majid
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 208