GENERALIZED NONCOMMUTATIVE HARDY AND HARDY-HILBERT TYPE INEQUALITIES

被引:9
|
作者
Hansen, Frank [1 ]
Krulic, Kristina [2 ]
Pecarici, Josip [2 ]
Persson, Lars-Erik [3 ]
机构
[1] Univ Copenhagen, Dept Econ, DK-1353 Copenhagen, Denmark
[2] Univ Zagreb, Fac Text Technol, Zagreb 10000, Croatia
[3] Lulea Univ Technol, Dept Math, SE-97187 Lulea, Sweden
关键词
Inequalities; Hardy's inequality; Hardy-Hilbert's inequality; Godunova's inequality; weights; positive operator; operator convex functions;
D O I
10.1142/S0129167X10006501
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend and unify several Hardy type inequalities to functions whose values are positive semi-definite operators. In particular, our methods lead to the operator versions of Hardy-Hilbert's and Godunova's inequalities. While classical Hardy type inequalities hold for parameter values p > 1, it is typical that the operator versions hold only for 1 < p <= 2, even for functions with values in 2 x 2 matrices.
引用
收藏
页码:1283 / 1295
页数:13
相关论文
共 50 条
  • [1] HARDY-HILBERT TYPE INEQUALITIES FOR MATRICES
    Zhang, Jiao
    Zheng, Zhan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2022, 25 (04): : 1069 - 1078
  • [2] Generalization of inequalities of Hardy-Hilbert type
    Brnetic, I
    Pecaric, J
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (02): : 217 - 225
  • [3] HARDY-HILBERT TYPE INEQUALITIES FOR HILBERT SPACE OPERATORS
    Kian, Mohsen
    ANNALS OF FUNCTIONAL ANALYSIS, 2012, 3 (02): : 128 - 134
  • [4] SOME REMARKS ON REVERSE HILBERT AND HARDY-HILBERT TYPE INEQUALITIES
    Krnic, Mario
    Pecaric, Josip
    Vukovic, Predrag
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2007, 56 (03) : 349 - 357
  • [5] An Improvement of the Hardy-Hilbert Type Integral Inequalities and an Application
    HE Le-ping~1 CHEN Xiao-yu~2 SHANG Xiao-zhou~2 (1.Department of Mathematics and Computer Science
    2.Department of Mathematics and Computer Science
    数学季刊, 2007, (01) : 68 - 74
  • [6] Generalization of Hilbert and Hardy-Hilbert integral inequalities
    Yang, BC
    Brnetic, I
    Krnic, M
    Pecaric, J
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2005, 8 (02): : 259 - 272
  • [7] SEVERAL NEW HARDY-HILBERT'S INEQUALITIES
    Du, Hongxia
    Miao, Yu
    FILOMAT, 2011, 25 (03) : 153 - 162
  • [8] Discrete Hardy-Hilbert's Inequalities in Rn
    谢鸿政
    吕中学
    Communications in Mathematical Research, 2005, (01) : 87 - 94
  • [9] On a strengthened Hardy-Hilbert type inequality
    Di-Yi Chen
    Guang-Sheng Chen
    Ti Song
    Li-Fang Liao
    Journal of Inequalities and Applications, 2013
  • [10] On a Reverse of a Hardy-Hilbert Type Inequality
    Sun, Baoju
    PROGRESS IN CIVIL ENGINEERING, PTS 1-4, 2012, 170-173 : 2966 - 2969