A sandpile experiment and its implications for self-organized criticality and characteristic earthquake

被引:17
|
作者
Yoshioka, N [1 ]
机构
[1] Yokohama City Univ, Grad Sch Integrated Sci, Kanazawa Ku, Yokohama, Kanagawa 2360027, Japan
来源
EARTH PLANETS AND SPACE | 2003年 / 55卷 / 06期
关键词
sandpile; self-organized criticality; characteristic earthquake;
D O I
10.1186/BF03351762
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We have performed an experiment in which a conical sandpile was built by slowly dropping sand onto a circular disk through a funnel with a small outlet. Avalanches (sand dropping off the disk) occurred, the size and the number of which were observed. It was seen that the behavior of avalanches (frequency-size distribution) was determined solely by the ratio of grain size to disk size, which is consistent with earlier studies. We categorize the behavior into three types: (1) the self-organized criticality (SOC) type (obeying Gutenberg-Richter's law), (2) the characteristic earthquake (CE) type where only large avalanches are almost periodically generated, and (3) the transition type. The transition from SOC to CE type drastically occurs when the ratio of grain diameter to disk radius is reduced to about 0.02. The underlying mechanism to cause the transition is considered. Results of simulation by cellular automaton models, an experimental result showing that a conical pile has a stress dip near its center, and a two-dimensional simulation building up a conical pile, all suggest that the transition occurs due to a change in stress profile inside and near the surface of the pile. Although we are unfortunately not able to understand the detailed mechanism at the present stage, it seems very important to further investigate the underlying physics of the transition because it presumably provides us a clue to understand the mechanism of the periodicity of large characteristic earthquakes and may open a way for earthquake prediction.
引用
收藏
页码:283 / 289
页数:7
相关论文
共 50 条
  • [1] A sandpile experiment and its implications for self-organized criticality and characteristic earthquake
    Naoto Yoshioka
    Earth, Planets and Space, 2003, 55 : 283 - 289
  • [2] Sandpile models of self-organized criticality
    Manna, SS
    CURRENT SCIENCE, 1999, 77 (03): : 388 - 393
  • [3] Controlling self-organized criticality in sandpile models
    Cajueiro, Daniel O.
    Andrade, R. F. S.
    PHYSICAL REVIEW E, 2010, 81 (01):
  • [4] The evidence for self-organized criticality in sandpile dynamics
    Feder, J
    FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1995, 3 (03): : 431 - 443
  • [5] The flaming sandpile: self-organized criticality and wildfires
    Ricotta, C
    Avena, G
    Marchetti, M
    ECOLOGICAL MODELLING, 1999, 119 (01) : 73 - 77
  • [6] Self-Organized Criticality Theory Model of Thermal Sandpile
    Peng Xiao-Dong
    Qu Hong-Peng
    Xu Jian-Qiang
    Han Zui-Jiao
    CHINESE PHYSICS LETTERS, 2015, 32 (09)
  • [7] Self-organized criticality in some dissipative sandpile models
    Ruskin, H.J.
    Feng, Y.
    Physica A: Statistical Mechanics and its Applications, 1997, 245 (3-4): : 453 - 460
  • [8] Crossover to self-organized criticality in an inertial sandpile model
    Head, DA
    Rodgers, GJ
    PHYSICAL REVIEW E, 1997, 55 (03): : 2573 - 2579
  • [9] Self-Organized Criticality Theory Model of Thermal Sandpile
    彭晓东
    曲洪鹏
    许健强
    韩最蛟
    Chinese Physics Letters, 2015, 32 (09) : 83 - 87
  • [10] RENORMALIZATION SCHEME FOR SELF-ORGANIZED CRITICALITY IN SANDPILE MODELS
    PIETRONERO, L
    VESPIGNANI, A
    ZAPPERI, S
    PHYSICAL REVIEW LETTERS, 1994, 72 (11) : 1690 - 1693