Mirabolic Satake equivalence and supergroups

被引:5
|
作者
Braverman, Alexander [1 ,2 ]
Finkelberg, Michael [2 ,3 ,4 ]
Ginzburg, Victor [5 ]
Travkin, Roman [2 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Skolkovo Inst Sci & Technol, Moscow, Russia
[3] Natl Res Univ Higher Sch Econ, Dept Math, Moscow 119048, Russia
[4] Inst Informat Transmiss Problems, Moscow, Russia
[5] Univ Chicago, Dept Math, Chicago, IL 60637 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Satake equivalence; mirabolic affine Grassmannian; supergroups; REPRESENTATIONS; CATEGORY; DUALITY;
D O I
10.1112/S0010437X21007387
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a mirabolic analogue of the geometric Satake equivalence. We also prove an equivalence that relates representations of a supergroup to the category of GL(N - 1, C[[t]])-equivariant perverse sheaves on the affine Grassmannian of GLN. We explain how our equivalences fit into a more general framework of conjectures due to Gaiotto and to Ben-Zvi, Sakellaridis and Venkatesh.
引用
收藏
页码:1724 / 1765
页数:43
相关论文
共 50 条
  • [1] The motivic Satake equivalence
    Timo Richarz
    Jakob Scholbach
    Mathematische Annalen, 2021, 380 : 1595 - 1653
  • [2] The motivic Satake equivalence
    Richarz, Timo
    Scholbach, Jakob
    MATHEMATISCHE ANNALEN, 2021, 380 (3-4) : 1595 - 1653
  • [3] Orthosymplectic Satake equivalence
    Braverman, Alexander
    Finkelberg, Michael
    Travkin, Roman
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2022, 16 (04) : 695 - 732
  • [4] A combinatorial geometric Satake equivalence
    Kamnitzer, Joel
    ADVANCES IN MATHEMATICS, 2016, 300 : 5 - 16
  • [5] Notes on the Geometric Satake Equivalence
    Heiermann, Volker
    Prasad, Dipendra
    RELATIVE ASPECTS IN REPRESENTATION THEORY, LANGLANDS FUNCTORIALITY AND AUTOMORPHIC FORMS, 2018, 2221 : 1 - 134
  • [6] TWISTED GEOMETRIC SATAKE EQUIVALENCE
    Finkelberg, Michael
    Lysenko, Sergey
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2010, 9 (04) : 719 - 739
  • [7] A NEW APPROACH TO THE GEOMETRIC SATAKE EQUIVALENCE
    Richarz, Timo
    DOCUMENTA MATHEMATICA, 2014, 19 : 209 - 246
  • [8] THE INTEGRAL GEOMETRIC SATAKE EQUIVALENCE IN MIXED CHARACTERISTIC
    Yu, Jize
    REPRESENTATION THEORY, 2022, 26 : 874 - 905
  • [9] Kostant section, universal centralizer, and a modular derived Satake equivalence
    Simon Riche
    Mathematische Zeitschrift, 2017, 286 : 223 - 261
  • [10] TWISTED GEOMETRIC SATAKE EQUIVALENCE VIA GERBES ON THE FACTORIZABLE GRASSMANNIAN
    Reich, Ryan Cohen
    REPRESENTATION THEORY, 2012, 16 : 345 - 449