Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation

被引:53
|
作者
He, Ruifei [1 ,2 ]
Yang, Jihan [1 ]
Qi, Xiaojuan [1 ]
机构
[1] Univ Hong Kong, Hong Kong, Peoples R China
[2] Zhejiang Univ, Hangzhou, Peoples R China
关键词
D O I
10.1109/ICCV48922.2021.00685
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While self-training has advanced semi-supervised semantic segmentation, it severely suffers from the long-tailed class distribution on real-world semantic segmentation datasets that make the pseudo-labeled data bias toward majority classes. In this paper, we present a simple and yet effective Distribution Alignment and Random Sampling (DARS) method to produce unbiased pseudo labels that match the true class distribution estimated from the labeled data. Besides, we also contribute a progressive data augmentation and labeling strategy to facilitate model training with pseudo-labeled data. Experiments on both Cityscapes and PASCAL VOC 2012 datasets demonstrate the effectiveness of our approach. Albeit simple, our method performs favorably in comparison with state-of-the-art approaches.
引用
收藏
页码:6910 / 6920
页数:11
相关论文
共 50 条
  • [1] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels
    Wang, Yuchao
    Wang, Haochen
    Shen, Yujun
    Fei, Jingjing
    Li, Wei
    Jin, Guoqiang
    Wu, Liwei
    Zhao, Rui
    Le, Xinyi
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 4238 - 4247
  • [2] Semi-Supervised Learning of Semantic Correspondence with Pseudo-Labels
    Kim, Jiwon
    Ryoo, Kwangrok
    Seo, Junyoung
    Lee, Gyuseong
    Kim, Daehwan
    Cho, Hansang
    Kim, Seungryong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 19667 - 19677
  • [3] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision
    Chen, Xiaokang
    Yuan, Yuhui
    Zeng, Gang
    Wang, Jingdong
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 2613 - 2622
  • [4] A baseline for semi-supervised learning of efficient semantic segmentation models
    Grubisic, Ivan
    Orsic, Marin
    Segvic, Sinisa
    PROCEEDINGS OF 17TH INTERNATIONAL CONFERENCE ON MACHINE VISION APPLICATIONS (MVA 2021), 2021,
  • [5] Learning pseudo labels for semi-and-weakly supervised semantic segmentation
    Wang, Yude
    Zhang, Jie
    Kan, Meina
    Shan, Shiguang
    PATTERN RECOGNITION, 2022, 132
  • [6] Twin Pseudo-training for semi-supervised semantic segmentation
    Huang, Huiwen
    Luo, Xiaonan
    Xu, Songhua
    Li, Youxing
    COMPUTERS & GRAPHICS-UK, 2023, 115 : 348 - 358
  • [7] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation
    Yuan, Jianlong
    Liu, Yifan
    Shen, Chunhua
    Wang, Zhibin
    Li, Hao
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8209 - 8218
  • [8] Self Pseudo Entropy Knowledge Distillation for Semi-supervised Semantic Segmentation
    Lu X.
    Jiao L.
    Li L.
    Liu F.
    Liu X.
    Yang S.
    IEEE Trans Circuits Syst Video Technol, 8 (7359-7372): : 1 - 1
  • [9] Bayesian Pseudo Labels: Expectation Maximization for Robust and Efficient Semi-supervised Segmentation
    Xu, Mou-Cheng
    Zhou, Yukun
    Jin, Chen
    de Groot, Marius
    Alexander, Daniel C.
    Oxtoby, Neil P.
    Hu, Yipeng
    Jacob, Joseph
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT V, 2022, 13435 : 580 - 590
  • [10] Transferable Semi-Supervised Semantic Segmentation
    Xiao, Huaxin
    Wei, Yunchao
    Liu, Yu
    Zhang, Maojun
    Feng, Jiashi
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 7420 - 7427