The effects of RF impairments in Vehicle-to-Vehicle Communications

被引:0
|
作者
Boulogeorgos, Alexandros-Apostolos A. [1 ]
Sofotasios, Paschalis C. [1 ,2 ]
Muhaidat, Sami [3 ,4 ]
Valkama, Mikko [2 ]
Karagiannidis, George K. [1 ,3 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Elect & Comp Engn, Thessaloniki 54124, Greece
[2] Tampere Univ Technol, Dept Elect & Commun Engn, FIN-33101 Tampere, Finland
[3] Khalifa Univ, Dept Elect & Comp Engn, POB 127788, Abu Dhabi, U Arab Emirates
[4] Univ Surrey, Dept Elect Engn, Guildford GU2 7XH, Surrey, England
关键词
I/Q IMBALANCE; IQ IMBALANCE; COMPENSATION; NAKAGAMI; PHASE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Radio frequency (RE) front-ends constitute a fundamental part of both conventional and emerging wireless communication systems. However, in spite of their importance they are often assumed ideal, although they are practically subject to certain detrimental impairments, such as amplifier nonlinearities, phase noise and in phase and quadrature (I/Q) imbalance (IQI). The present work is devoted to the quantification and evaluation of the RF IQI effects in the context of realistic wireless vehicle-to-vehicle (V2V) communications over double-Nakagami-m fading channels. Novel closed form expressions are derived for the corresponding outage probability for the case of ideal transmitter (TX) and receiver (RX), ideal TX and I/Q imbalanced RX, I/Q imbalanced TX and ideal RX, and joint I/Q imbalanced TX/RX. The offered analytic results have a relatively convenient algebraic representation and their validity is extensively justified through comparisons with respective results from computer simulations. Based on these, it is shown that cascaded fading results to considerable degradations in the system performance and that assuming ideal RF front-ends at the TX and RX induces non negligible errors in the outage probability evaluation that can exceed 20% in several V2V communication scenarios.
引用
收藏
页码:840 / 845
页数:6
相关论文
共 50 条
  • [1] Developments in vehicle-to-vehicle communications
    Ward, DD
    Topham, DA
    Constantinou, CC
    Arvanitis, TN
    [J]. ADVANCED MICROSYSTEMS FOR AUTOMOTIVE APPLICATIONS 2005, 2005, : 353 - 370
  • [2] Channel modeling for vehicle-to-vehicle communications
    Matolak, David W.
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2008, 46 (05) : 76 - 83
  • [3] A tutorial survey on vehicle-to-vehicle communications
    Zeadally, S.
    Guerrero, J.
    Contreras, J.
    [J]. TELECOMMUNICATION SYSTEMS, 2020, 73 (03) : 469 - 489
  • [4] Vehicle-to-vehicle communications for AVCS platooning
    Tank, T
    Linnartz, JPMG
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 1997, 46 (02) : 528 - 536
  • [5] A tutorial survey on vehicle-to-vehicle communications
    S. Zeadally
    J. Guerrero
    J. Contreras
    [J]. Telecommunication Systems, 2020, 73 : 469 - 489
  • [6] Data Naming in Vehicle-to-Vehicle Communications
    Wang, Lucas
    Wakikawa, Ryuji
    Kuntz, Romain
    Vuyyuru, Rama
    Zhang, Lixia
    [J]. 2012 IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2012, : 328 - 333
  • [7] TCP THROUGHPUT FOR VEHICLE-TO-VEHICLE COMMUNICATIONS
    Zhang, Xinming
    Xie, Fei
    Wang, Wenjing
    Chatterjee, Mainak
    [J]. 2006 FIRST INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND NETWORKING IN CHINA, 2006,
  • [8] Impact of Big Vehicle Shadowing on Vehicle-to-Vehicle Communications
    Hieu Nguyen
    Xu Xiaoli
    Noor-A-Rahim, Md
    Guan, Yong Liang
    Pesch, Dirk
    Li, Hong
    Filippi, Alessio
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (07) : 6902 - 6915
  • [9] Propagation aspects of vehicle-to-vehicle communications - an overview
    Molisch, Andreas F.
    Tufvesson, Fredrik
    Karedal, Johan
    Mecklenbrauker, Christoph
    [J]. RWS: 2009 IEEE RADIO AND WIRELESS SYMPOSIUM, 2009, : 171 - +
  • [10] Reliably Suppressed Broadcasting for Vehicle-to-Vehicle Communications
    Lee, John
    Chen, Wai
    [J]. 2010 IEEE 71ST VEHICULAR TECHNOLOGY CONFERENCE, 2010,