VAMMPIRE-LORD: A Web Server for Straightforward Lead Optimization Using Matched Molecular Pairs

被引:10
|
作者
Weber, Julia [1 ]
Achenbach, Janosch [1 ]
Moser, Daniel [1 ]
Proschak, Ewgenij [1 ]
机构
[1] Goethe Univ Frankfurt, Inst Pharmaceut Chem, D-60438 Frankfurt, Germany
关键词
SCORING FUNCTIONS; DATABASE; DESIGN; IMPACT; LIGAND; TOOL;
D O I
10.1021/ci5005256
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
VAMMPIRE-LORD (lead optimization by rational design) describes an innovative strategy to improve the binding affinity of a defined lead compound using 3D matched molecular pairs (3D-MMPs). 3D-MMPs are defined as pairs of molecules that differ in exactly one structural transformation and have a known bioactive conformation. We developed a novel atom-pair descriptor (LORD_FP) that represents the ligand-as well as the receptor environment-of a chemical transformation and built a predictive model based on 17 602 3D-MMPs. We demonstrate that the created model is able to extrapolate the knowledge of a chemical transformation and the associated effect on ligand affinity to any similar system. VAMMPIRE-LORD was implemented as a web server that guides the user step-by-step through the optimization process of a defined lead compound.
引用
收藏
页码:207 / 213
页数:7
相关论文
共 23 条
  • [1] VAMMPIRE: A Matched Molecular Pairs Database for Structure-Based Drug Design and Optimization
    Weber, Julia
    Achenbach, Janosch
    Moser, Daniel
    Proschak, Ewgenij
    JOURNAL OF MEDICINAL CHEMISTRY, 2013, 56 (12) : 5203 - 5207
  • [2] Lead Optimization Using Matched Molecular Pairs: Inclusion of Contextual Information for Enhanced Prediction of hERG Inhibition, Solubility, and Lipophilicity
    Papadatos, George
    Alkarouri, Muhammad
    Gillet, Valerie J.
    Willett, Peter
    Kadirkamanathan, Visakan
    Luscombe, Christopher N.
    Bravi, Gianpaolo
    Richmond, Nicola J.
    Pickett, Stephen D.
    Hussain, Jameed
    Pritchard, John M.
    Cooper, Anthony W. J.
    Macdonald, Simon J. F.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2010, 50 (10) : 1872 - 1886
  • [3] Transformer-based molecular optimization beyond matched molecular pairs
    He, Jiazhen
    Nittinger, Eva
    Tyrchan, Christian
    Czechtizky, Werngard
    Patronov, Atanas
    Bjerrum, Esben Jannik
    Engkvist, Ola
    JOURNAL OF CHEMINFORMATICS, 2022, 14 (01)
  • [4] Transformer-based molecular optimization beyond matched molecular pairs
    Jiazhen He
    Eva Nittinger
    Christian Tyrchan
    Werngard Czechtizky
    Atanas Patronov
    Esben Jannik Bjerrum
    Ola Engkvist
    Journal of Cheminformatics, 14
  • [5] Molecular matched pairs derived QSAR for the optimization of ADMET properties
    Johnson, Stephen
    Davis, Malcolm
    Posy, Shana
    Claus, Brian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [6] Comparison of matched molecular pairs, matched molecular series and machine learning models for the optimization of ADME endpoints
    Keefer, Christopher
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [7] Coupling Matched Molecular Pairs with Machine Learning for Virtual Compound Optimization
    Turk, Samo
    Merget, Benjamin
    Rippmann, Friedrich
    Fulle, Simone
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2017, 57 (12) : 3079 - 3085
  • [8] Prediction-driven matched molecular pairs to interpret QSARs and aid the molecular optimization process
    Sushko, Yurii
    Novotarskyi, Sergii
    Koerner, Robert
    Vogt, Joachim
    Abdelaziz, Ahmed
    Tetko, Igor V.
    JOURNAL OF CHEMINFORMATICS, 2014, 6
  • [9] Prediction-driven matched molecular pairs to interpret QSARs and aid the molecular optimization process
    Yurii Sushko
    Sergii Novotarskyi
    Robert Körner
    Joachim Vogt
    Ahmed Abdelaziz
    Igor V Tetko
    Journal of Cheminformatics, 6
  • [10] Analyzing the structural sensitivity of QSAR models using matched molecular pairs
    Clark, Robert
    Miller, David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250