The Predikin webserver: improved prediction of protein kinase peptide specificity using structural information

被引:26
|
作者
Saunders, Neil F. W. [1 ]
Kobe, Bostjan [2 ,3 ]
机构
[1] Univ Queensland, Sch Mol & Microbial Sci, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Inst Mol Biosci, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Ctr Funct & Appl Genom, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会; 英国医学研究理事会;
关键词
D O I
10.1093/nar/gkn279
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Predikin webserver allows users to predict substrates of protein kinases. The Predikin system is built from three components: a database of protein kinase substrates that links phosphorylation sites with specific protein kinase sequences; a perl module to analyse query protein kinases and a web interface through which users can submit protein kinases for analysis. The Predikin perl module provides methods to (i) locate protein kinase catalytic domains in a sequence, (ii) classify them by type or family, (iii) identify substrate-determining residues, (iv) generate weighted scoring matrices using three different methods, (v) extract putative phosphorylation sites in query substrate sequences and (vi) score phosphorylation sites for a given kinase, using optional filters. The web interface provides user-friendly access to each of these functions and allows users to obtain rapidly a set of predictions that they can export for further analysis. The server is available at http://predikin.biosci.uq.edu.au.
引用
收藏
页码:W286 / W290
页数:5
相关论文
共 50 条
  • [1] Predikin and PredikinDB: a computational framework for the prediction of protein kinase peptide specificity and an associated database of phosphorylation sites
    Saunders, Neil F. W.
    Brinkworth, Ross I.
    Huber, Thomas
    Kemp, Bruce E.
    Kobe, Bostjan
    [J]. BMC BIOINFORMATICS, 2008, 9 (1)
  • [2] Predikin and PredikinDB: a computational framework for the prediction of protein kinase peptide specificity and an associated database of phosphorylation sites
    Neil FW Saunders
    Ross I Brinkworth
    Thomas Huber
    Bruce E Kemp
    Bostjan Kobe
    [J]. BMC Bioinformatics, 9
  • [3] Kinase peptide specificity: Improved determination and relevance to protein phosphorylation
    Fujii, K
    Zhu, GZ
    Liu, Y
    Hallam, J
    Chen, L
    Herrero, J
    Shaw, S
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (38) : 13744 - 13749
  • [4] Predicting Protein Kinase Specificity: Predikin Update and Performance in the DREAM4 Challenge
    Ellis, Jonathan J.
    Kobe, Bostjan
    [J]. PLOS ONE, 2011, 6 (07):
  • [5] Analysis of protein kinase specificity by peptide libraries and prediction of in vivo substrates
    Zhou, SY
    [J]. REGULATORS AND EFFECTORS OF SMALL GTPASES, PT F, RAS FAMILY I, 2001, 332 : 171 - 183
  • [6] The Kinase Specificity of Protein Kinase Inhibitor Peptide
    Chen, Yao
    Sabatini, Bernardo L.
    [J]. FRONTIERS IN PHARMACOLOGY, 2021, 12
  • [7] Profiling protein kinase substrate specificity using peptide arrays
    Turk, Benjamin E.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [8] Protein kinase specificity - A srategic collaboration between kinase peptide specificity and substrate recruitment
    Zhu, GZ
    Liu, Y
    Shaw, S
    [J]. CELL CYCLE, 2005, 4 (01) : 52 - 56
  • [9] Protein Interaction Prediction Using the Structural Domain Information
    Resat, H.
    Singhal, M.
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2006, 17
  • [10] Peptide-binding specificity prediction using fine-tuned protein structure prediction networks
    Motmaen, Amir
    Dauparas, Justas
    Baek, Minkyung
    Abedi, Mohamad H.
    Baker, David
    Bradley, Philip
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (09)