Subadditivity inequalities in von Neumann algebras and characterization of tracial functionals

被引:26
|
作者
Tikhonov, OE [1 ]
机构
[1] Kazan VI Lenin State Univ, Res Inst Math & Mech, Kazan 420008, Russia
关键词
algebra of matrices; functional calculus; positive normal functional; subadditivity inequality; tracial functional; von Neumann algebra;
D O I
10.1007/s11117-005-2711-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine under which assumptions on a positive normal functional phi on a von Neumann algebra, M and a Borel measurable function f: R+ -> R with f(0) = 0 the subadditivity inequality phi(f(A+B)) <= phi(f(A)) +phi(f (B)) holds true for all positive operators A, B in M. A corresponding characterization of tracial functionals among positive normal functionals on a von Neumann algebra is presented.
引用
收藏
页码:259 / 264
页数:6
相关论文
共 50 条