Spatial patterns in CO2 evasion from the global river network

被引:239
|
作者
Lauerwald, Ronny [1 ,2 ,3 ]
Laruelle, Goulven G. [1 ,4 ]
Hartmann, Jens [3 ]
Ciais, Philippe [5 ]
Regnier, Pierre A. G. [1 ]
机构
[1] Univ Libre Bruxelles, Dept Earth & Environm Sci, Brussels, Belgium
[2] Inst Pierre Simon Laplace, Paris, France
[3] Univ Hamburg, Inst Geol, Hamburg, Germany
[4] Univ Utrecht, Dept Earth Sci Geochem, Utrecht, Netherlands
[5] LSCE IPSL, Gif Sur Yvette, France
关键词
river; CO2; global C cycle; carbon; map; pCO(2); CARBON-DIOXIDE; TEMPORAL VARIABILITY; AQUATIC CONDUIT; FLUXES; LAND; STREAMS; SCHELDT; WATERS; EFFLUX; CYCLE;
D O I
10.1002/2014GB004941
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
CO2 evasion from rivers (FCO2) is an important component of the global carbon budget. Here we present the first global maps of CO2 partial pressures (pCO(2)) in rivers of stream orders 3 and higher and the resulting FCO2 at 0.5 degrees resolution constructed with a statistical model. A geographic information system based approach is used to derive a pCO(2) prediction function trained on data from 1182 sampling locations. While data from Asia and Africa are scarce and the training data set is dominated by sampling locations from the Americas, Europe, and Australia, the sampling locations cover the full spectrum from high to low latitudes. The predictors of pCO(2) are net primary production, population density, and slope gradient within the river catchment as well as mean air temperature at the sampling location (r(2)=0.47). The predicted pCO(2) map was then combined with spatially explicit estimates of stream surface area A(river) and gas exchange velocity k calculated from published empirical equations and data sets to derive the FCO2 map. Using Monte Carlo simulations, we assessed the uncertainties of our estimates. At the global scale, we estimate an average river pCO(2) of 2400 (2019-2826) mu atm and a FCO2 of 650 (483-846) Tg C yr(-1) (5th and 95th percentiles of confidence interval). Our global CO2 evasion is substantially lower than the recent estimate of 1800 Tg C yr(-1) although the training set of pCO(2) is very similar in both studies, mainly due to lower tropical pCO(2) estimates in the present study. Our maps reveal strong latitudinal gradients in pCO(2), A(river), and FCO2. The zone between 10 degrees N and 10 degrees S contributes about half of the global CO2 evasion. Collection of pCO(2) data in this zone, in particular, for African and Southeast Asian rivers is a high priority to reduce uncertainty on FCO2.
引用
收藏
页码:534 / 554
页数:21
相关论文
共 50 条
  • [1] Landscape process domains drive patterns of CO2 evasion from river networks
    Rocher-Ros, Gerard
    Sponseller, Ryan A.
    Lidberg, William
    Morth, Carl-Magnus
    Giesler, Reiner
    LIMNOLOGY AND OCEANOGRAPHY LETTERS, 2019, 4 (04) : 87 - 95
  • [2] Dynamics of riverine CO2 in the Yangtze River fluvial network and their implications for carbon evasion
    Ran, Lishan
    Lu, Xi Xi
    Liu, Shaoda
    BIOGEOSCIENCES, 2017, 14 (08) : 2183 - 2198
  • [3] Lake Morphometry and River Network Controls on Evasion of Terrestrially Sourced Headwater CO2
    Brinkerhoff, C. B.
    Raymond, P. A.
    Maavara, T.
    Ishitsuka, Y.
    Aho, K. S.
    Gleason, C. J.
    GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (01)
  • [4] Patterns of CO2 Variability from Global Satellite Data
    Ruzmaikin, Alexander
    Aumann, Hartmut H.
    Pagano, Thomas S.
    JOURNAL OF CLIMATE, 2012, 25 (18) : 6383 - 6393
  • [5] A Preliminary Assessment of Global CO2: Spatial Patterns, Temporal Trends, and Policy Implications
    Ei Kenawy, Ahmed M.
    Al-Awadhi, Talal
    Abdullah, Meshal
    Jawarneh, Rana
    Abulibdeh, Ammar
    GLOBAL CHALLENGES, 2023, 7 (12)
  • [6] Downstream carbon transport and surface CO2 evasion in the Hanjiang River Network and their implications for regional carbon budget
    Lv, Shucong
    Yu, Qibiao
    Wang, Liping
    Deng, Chenning
    Liu, Lusan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 884
  • [7] River Corridor Sources Dominate CO2 Emissions From a Lowland River Network
    Kirk, Lily
    Cohen, Matthew J.
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2023, 128 (01)
  • [8] CO2 evasion from boreal lakes: Revised estimate, drivers of spatial variability, and future projections
    Hastie, Adam
    Lauerwald, Ronny
    Weyhenmeyer, Gesa
    Sobek, Sebastian
    Verpoorter, Charles
    Regnier, Pierre
    GLOBAL CHANGE BIOLOGY, 2018, 24 (02) : 711 - 728
  • [9] Stream metabolism controls diel patterns and evasion of CO2 in Arctic streams
    Rocher-Ros, Gerard
    Sponseller, Ryan A.
    Bergstrom, Ann-Kristin
    Myrstener, Maria
    Giesler, Reiner
    GLOBAL CHANGE BIOLOGY, 2020, 26 (03) : 1400 - 1413
  • [10] Evasion of CO2 injected into the ocean in the context of CO2 stabilization
    Kheshgi, HS
    ENERGY, 2004, 29 (9-10) : 1479 - 1486