Transformer-based unsupervised contrastive learning for histopathological image classification

被引:118
|
作者
Wang, Xiyue [1 ,2 ]
Yang, Sen [3 ]
Zhang, Jun [3 ]
Wang, Minghui [1 ,2 ]
Zhang, Jing [1 ]
Yang, Wei [3 ]
Huang, Junzhou [3 ]
Han, Xiao [3 ]
机构
[1] Sichuan Univ, Coll Biomed Engn, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
[3] Tencent AI Lab, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
Histopathology; Transformer; Self-supervised learning; Feature extraction;
D O I
10.1016/j.media.2022.102559
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A large-scale and well-annotated dataset is a key factor for the success of deep learning in medical image analysis. However, assembling such large annotations is very challenging, especially for histopathological images with unique characteristics (e.g., gigapixel image size, multiple cancer types, and wide staining variations). To alleviate this issue, self-supervised learning (SSL) could be a promising solution that relies only on unlabeled data to generate informative representations and generalizes well to various downstream tasks even with limited annotations. In this work, we propose a novel SSL strategy called semantically-relevant contrastive learning (SRCL), which compares relevance between instances to mine more positive pairs. Compared to the two views from an instance in traditional contrastive learning, our SRCL aligns multiple positive instances with similar visual concepts, which increases the diversity of positives and then results in more informative representations. We employ a hybrid model (CTransPath) as the backbone, which is designed by integrating a convolutional neural network (CNN) and a multi-scale Swin Transformer architecture. The CTransPath is pretrained on massively unlabeled histopathological images that could serve as a collaborative local-global feature extractor to learn universal feature representations more suitable for tasks in the histopathology image domain. The effectiveness of our SRCL-pretrained CTransPath is investigated on five types of downstream tasks (patch retrieval, patch classification, weakly-supervised whole-slide image classification, mitosis detection, and colorectal adenocarcinoma gland segmentation), covering nine public datasets. The results show that our SRCLbased visual representations not only achieve state-of-the-art performance in each dataset, but are also more robust and transferable than other SSL methods and ImageNet pretraining (both supervised and self-supervised methods). Our code and pretrained model are available at https://github.com/Xiyue- Wang/TransPath.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] TransPath: Transformer-Based Self-supervised Learning for Histopathological Image Classification
    Wang, Xiyue
    Yang, Sen
    Zhang, Jun
    Wang, Minghui
    Zhang, Jing
    Huang, Junzhou
    Yang, Wei
    Han, Xiao
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT VIII, 2021, 12908 : 186 - 195
  • [2] Transformer-based Contrastive Learning for Unsupervised Person Re-Identification
    Tao, Yusheng
    Zhang, Jian
    Chen, Tianquan
    Wang, Yuqing
    Zhu, Yuesheng
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [3] Transformer-based contrastive learning framework for image anomaly detection
    Fan, Wentao
    Shangguan, Weimin
    Chen, Yewang
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (10) : 3413 - 3426
  • [4] Transformer-based contrastive learning framework for image anomaly detection
    Wentao Fan
    Weimin Shangguan
    Yewang Chen
    [J]. International Journal of Machine Learning and Cybernetics, 2023, 14 : 3413 - 3426
  • [5] Transformer-Based Masked Autoencoder With Contrastive Loss for Hyperspectral Image Classification
    Cao, Xianghai
    Lin, Haifeng
    Guo, Shuaixu
    Xiong, Tao
    Jiao, Licheng
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [6] TransPhys: Transformer-based unsupervised contrastive learning for remote heart rate measurement
    Wang, Rui-Xuan
    Sun, Hong-Mei
    Hao, Rong-Rong
    Pan, Ang
    Jia, Rui-Sheng
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86
  • [7] Contrastive Learning Based on Transformer for Hyperspectral Image Classification
    Hu, Xiang
    Li, Teng
    Zhou, Tong
    Liu, Yu
    Peng, Yuanxi
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (18):
  • [8] ScoreNet: Learning Non-Uniform Attention and Augmentation for Transformer-Based Histopathological Image Classification
    Stegmuller, Thomas
    Bozorgtabar, Behzad
    Spahr, Antoine
    Thiran, Jean-Philippe
    [J]. 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 6159 - 6168
  • [9] A 3-D-Swin Transformer-Based Hierarchical Contrastive Learning Method for Hyperspectral Image Classification
    Huang, Xin
    Dong, Mengjie
    Li, Jiayi
    Guo, Xian
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [10] Vision Transformer-Based Ensemble Learning for Hyperspectral Image Classification
    Liu, Jun
    Guo, Haoran
    He, Yile
    Li, Huali
    [J]. REMOTE SENSING, 2023, 15 (21)