CMRNet: Camera to LiDAR-Map Registration

被引:0
|
作者
Cattaneo, D. [1 ]
Vaghi, M. [1 ]
Ballardini, A. L. [2 ]
Fontana, S. [1 ]
Sorrenti, D. G. [1 ]
Burgard, W. [3 ]
机构
[1] Univ Milano Bicocca, Milan, Italy
[2] Univ Alcala, Comp Sci Dept, Alcala De Henares, Spain
[3] Albert Ludwigs Univ Freiburg, Freiburg, Germany
关键词
D O I
10.1109/itsc.2019.8917470
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
In this paper we present CMRNet, a realtime approach based on a Convolutional Neural Network (CNN) to localize an RGB image of a scene in a map built from LiDAR data. Our network is not trained in the working area, i.e., CMRNet does not learn the map. Instead it learns to match an image to the map. We validate our approach on the KITTI dataset, processing each frame independently without any tracking procedure. CMRNet achieves 0.27m and 1.07. median localization accuracy on the sequence 00 of the odometry dataset, starting from a rough pose estimate displaced up to 3.5m and 17 degrees. To the best of our knowledge this is the first CNN-based approach that learns to match images from a monocular camera to a given, preexisting 3D LiDAR-map.
引用
收藏
页码:1283 / 1289
页数:7
相关论文
共 50 条
  • [1] Map Compressibility Assessment for LiDAR Registration
    Chang, Ming-Fang
    Dong, Wei
    Mangelson, Joshua
    Kaess, Michael
    Lucey, Simon
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 5560 - 5567
  • [2] Time Synchronization and Space Registration of Roadside LiDAR and Camera
    Wang, Chuan
    Liu, Shijie
    Wang, Xiaoyan
    Lan, Xiaowei
    ELECTRONICS, 2023, 12 (03)
  • [3] PSNet: LiDAR and Camera Registration Using Parallel Subnetworks
    Wu, Yi
    Zhu, Ming
    Liang, Ji
    IEEE ACCESS, 2022, 10 : 70553 - 70561
  • [4] A Transformer Approach for Camera-to-LIDAR Data Registration
    Wang, Ju
    Tang, Yong
    Dasari, Venkat R.
    Geerhart, Billy
    Rapp, Brian
    Wang, Peng
    Chen, Wei-Bang
    Watts, Isaac
    2024 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE, IRI 2024, 2024, : 326 - 330
  • [5] Correcting Motion Distortion for LIDAR Scan-to-Map Registration
    McDermott, Matthew
    Rife, Jason
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (02) : 1516 - 1523
  • [6] LiDAR2Map: In Defense of LiDAR-Based Semantic Map Construction Using Online Camera Distillation
    Wang, Song
    Li, Wentong
    Liu, Wenyu
    Liu, Xiaolu
    Zhu, Jianke
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 5186 - 5195
  • [7] Automatic Calibration and Registration of Lidar and Stereo Camera without Calibration Objects
    John, Vijay
    Long, Qian
    Liu, Zheng
    Mita, Seiichi
    2015 IEEE INTERNATIONAL CONFERENCE ON VEHICULAR ELECTRONICS AND SAFETY (ICVES), 2015, : 231 - 237
  • [8] CFNet: LiDAR-Camera Registration Using Calibration Flow Network
    Lv, Xudong
    Wang, Shuo
    Ye, Dong
    SENSORS, 2021, 21 (23)
  • [9] Sensor Fusion and Registration of Lidar and Stereo Camera without Calibration Objects
    John, Vijay
    Long, Qian
    Xu, Yuquan
    Liu, Zheng
    Mita, Seiichi
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2017, E100A (02) : 499 - 509
  • [10] Geographical Map Registration and Fusion of Lidar-Aerial Orthoimagery in GIS
    Yi, Siqi
    Worrall, Stewart
    Nebot, Eduardo
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 128 - 134