A BiVO4 photoanode grown on porous and conductive SnO2 ceramics for water splitting driven by solar energy

被引:15
|
作者
Bondarchuk, Alexander N. [1 ]
Corrales-Mendoza, Ivan [1 ]
Aguilar-Martinez, Josue A. [2 ]
Tomas, Sergio A. [3 ]
Gomez-Caiceros, Daniel A. [1 ]
Hernandez-Mendez, Arturo [1 ]
Marken, Frank [4 ]
机构
[1] Univ Tecnol La Mixteca, Oaxaca 69000, Oaxaca, Mexico
[2] Univ Autonoma Nuevo Leon, Fac Ingn Mecan & Elect, Ctr Invest & Innovac Ingn Aeronaut, Carretera Salinas Victoria Km 2-3, Apodaca 66600, Nuevo Leon, Mexico
[3] IPN, Dept Fis, Ctr Invest & Estudios Avanzados, AP 14-740, Ciudad De Mexico 07360, Mexico
[4] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
关键词
Tin dioxide ceramics; Solar energy; Hydrogen energy; Bismuth vanadate; Water treatment; Water splitting; HYDROGEN-PRODUCTION; THIN-FILMS; PHOTOCATHODIC PROTECTION; PHOTOCATALYTIC ACTIVITY; EFFICIENT; GENERATION; OXIDES; XPS;
D O I
10.1016/j.ceramint.2019.12.152
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The transformation of solar energy into chemical energy stored as hydrogen fuel underlies the water splitting process into O-2 and H-2 in photo-electrochemical (PEC) cells. This a potentially promising technology to generate renewable and clean energy. To make this technology commercially viable, the engineering of appropriate low-cost and robust photo-electrode materials and substrates is needed. In this study, we introduce BiVO4-photoelectrodes grown on conductive bulk SnO2-Sb2O5 ceramics acting as porous substrate. For these photoelectrodes, the value of photocurrent density of 1.1 mA/cm(2) was achieved in 0.1 M NaOH electrolyte at 1.23 V vs. RHE (reversible hydrogen electrode) under LED light (lambda = 455 nm). This PEC performance of these BiVO4 photoelectrodes is reached in spite of using a simple and low-cost deposition technique, where the BiVO4-precursor is delivered to the bulk porous ceramic substrate as a nebulized aerosol in air-flow at room temperature. The high porosity of the ceramic substrate permits some permeation of the aerogel into the pores to a depth of several micrometers to provide a 3D-growth of the BiVO4-coating on conductive SnO2 grains. The film thickness of the BiVO4 on individual grains is approximately 100 nm. This construction of the photoelectrode leads to an effective interface with good absorption of solar radiation and good electron harvesting. The bulk ceramics assure favorable conditions for electron collection and charge transport, which results in a good PEC performance with this type of photoanode.
引用
收藏
页码:9040 / 9049
页数:10
相关论文
共 50 条
  • [1] A hematite photoelectrode grown on porous and conductive SnO2 ceramics for solar-driven water splitting
    Bondarchuk, Alexander N.
    Corrales-Mendoza, Ivan
    Tomas, Sergio A.
    Marken, Frank
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (36) : 19667 - 19675
  • [2] Reduced graphene oxide decorated SnO2/BiVO4 photoanode for photoelectrochemical water splitting
    Bai, Shouli
    Tian, Ke
    Meng, Jonathan Chenhui
    Zhao, Yingying
    Sun, Jianhua
    Zhang, Kewei
    Feng, Yongjun
    Luo, Ruixian
    Li, Dianqing
    Chen, Aifan
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 855
  • [3] Hierarchical mesoporous SnO2/BiVO4 photoanode decorated with Ag nanorods for efficient photoelectrochemical water splitting
    Tavazohi, Ali
    Abdizadeh, Hossein
    Golobostanfard, Mohammad Reza
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (44) : 18992 - 19004
  • [4] Chlorophyll sensitized BiVO4 as photoanode for solar water splitting and CO2 conversion
    Yiqing Feng
    Hanyun Cheng
    Jin Han
    Xiuzhen Zheng
    Yangyang Liu
    Yang Yang
    Liwu Zhang
    [J]. Chinese Chemical Letters, 2017, 28 (12) : 2254 - 2258
  • [5] Chlorophyll sensitized BiVO4 as photoanode for solar water splitting and CO2 conversion
    Feng, Yiqing
    Cheng, Hanyun
    Han, Jin
    Zheng, Xiuzhen
    Liu, Yangyang
    Yang, Yang
    Zhang, Liwu
    [J]. CHINESE CHEMICAL LETTERS, 2017, 28 (12) : 2254 - 2258
  • [6] Solar-Driven Water Splitting by a Nanostructured NiFe(OH) x Catalyst Incorporated BiVO4 Photoanode
    Saha, Soham
    Maity, Dipanjan
    Pal, Debashish
    Sarkar, Debasish
    De, Debasis
    Khan, Gobinda Gopal
    Mandal, Kalyan
    [J]. ACS APPLIED NANO MATERIALS, 2023, 6 (22) : 21385 - 21394
  • [7] A Zn: BiVO4/ Mo: BiVO4 homojunction as an efficient photoanode for photoelectrochemical water splitting
    Lee, Jae Myeong
    Baek, Ji Hyun
    Gill, Thomas Mark
    Shi, Xinjian
    Lee, SangMyeong
    Cho, In Sun
    Jung, Hyun Suk
    Zheng, Xiaolin
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (15) : 9019 - 9024
  • [8] Solar Water Splitting Utilizing a SiC Photocathode, a BiVO4 Photoanode, and a Perovskite Solar Cell
    Iwase, Akihide
    Kudo, Akihiko
    Numata, Youhei
    Ikegami, Masashi
    Miyasaka, Tsutomu
    Ichikawa, Naoto
    Kato, Masashi
    Hashimoto, Hideki
    Inoue, Haruo
    Ishitani, Osamu
    Tamiaki, Hitoshi
    [J]. CHEMSUSCHEM, 2017, 10 (22) : 4420 - 4423
  • [9] Understanding the Internal Conversion Efficiency of BiVO4/SnO2 Photoanodes for Solar Water Splitting: An Experimental and Computational Analysis
    Geronimo, Laura
    Ferreira, Catarina G.
    Gacha, Valentina
    Raptis, Dimitrios
    Martorell, Jordi
    Ros, Carles
    [J]. ACS APPLIED ENERGY MATERIALS, 2024, 7 (05) : 1792 - 1801
  • [10] Efficient Solar Water Splitting via Enhanced Charge Separation of the BiVO4 Photoanode
    Wang, Lina
    Liu, Zejun
    Xu, Xiaohong
    Jia, Yuefa
    Mei, Qiong
    Ding, Fei
    Peng, Jianhong
    Wang, Qizhao
    [J]. ACS APPLIED ENERGY MATERIALS, 2022, 5 (05) : 6383 - 6392