On the approximation of fixed points for a new class of generalized Berinde mappings

被引:0
|
作者
Samet, Bessem [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
关键词
Metric space; fixed point; alpha-continuous; alpha-Cauchy; alpha-complete; Picard iteration; convergence; THEOREMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new class of operators, for which a fixed point theorem is proven. This class of mappings is very large and unifies several classes of contractive type operators from the literature, including Berinde mappings. Such fact is proven via a comparison with various metrical contractive type mappings.
引用
收藏
页码:363 / 374
页数:12
相关论文
共 50 条
  • [1] Approximation of Fixed Points for a Class of Generalized Nonexpansive Mappings in Banach Spaces
    Ullah, Kifayat
    Hussain, Nawab
    Ahmad, Junaid
    Arshad, Muhammad
    [J]. THAI JOURNAL OF MATHEMATICS, 2020, 18 (03): : 1149 - 1159
  • [2] Approximation of fixed points for a new class of generalized non-expansive mappings in Banach spaces
    Abdeljawad, Thabet
    Karaca, Nazli Kadioglu
    Yildirim, Isa
    Mukheimer, Aiman
    [J]. AIMS MATHEMATICS, 2024, 9 (05): : 11958 - 11974
  • [3] APPROXIMATION TO FIXED-POINTS OF GENERALIZED NONEXPANSIVE MAPPINGS
    WONG, CS
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 54 (JAN) : 93 - 97
  • [4] A NEW ITERATIVE ALGORITHM FOR APPROXIMATION OF FIXED POINTS OF MULTIVALUED GENERALIZED α-NONEXPANSIVE MAPPINGS
    Abbas, Mujahid
    Iqbal, Hira
    Yao, Jen-Chih
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2021, 22 (03) : 471 - 486
  • [5] Common Fixed Points of an Iterative Method for Berinde Nonexpansive Mappings
    Bussaban, Limpapat
    Kettapun, Atichart
    [J]. THAI JOURNAL OF MATHEMATICS, 2018, 16 (01): : 49 - 60
  • [6] EXISTENCE AND ESTIMATION OF THE FIXED POINTS OF ENRICHED BERINDE NONEXPANSIVE MAPPINGS
    Ali, Javid
    Jubair, Mohd
    [J]. MISKOLC MATHEMATICAL NOTES, 2023, 24 (02) : 541 - 552
  • [7] On a new iteration scheme for numerical reckoning fixed points of Berinde mappings with convergence analysis
    Sintunavarat, Wutiphol
    Pitea, Ariana
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 2553 - 2562
  • [8] ITERATIVE APPROXIMATION OF FIXED POINTS OF A CLASS OF MAPPINGS IN A HILBERT SPACE
    Hirano, Norimichi
    Ito, Shouhei
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2005, 6 (02) : 251 - 258
  • [9] On fixed points of Berinde's contractive mappings in cone metric spaces
    Abbas, Mujahid
    Vetro, Pasquale
    Khan, Safeer Hussain
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2010, 26 (02) : 121 - 133
  • [10] A New Approximation Algorithm for Fixed Points of Nonexpansive Mappings
    Su, Y.
    Agarwal, R. P.
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2010, 15 (02) : 257 - 264