CENTRIST: A Visual Descriptor for Scene Categorization

被引:490
|
作者
Wu, Jianxin [1 ]
Rehg, James M. [2 ,3 ,4 ,5 ]
机构
[1] Nanyang Technol Univ, Sch Comp Engn, Singapore, Singapore
[2] Georgia Inst Technol, Sch Interact Comp, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Ctr Robot & Intelligent Machines, Atlanta, GA 30332 USA
[4] Georgia Inst Technol, Ctr Behav Imaging, Atlanta, GA 30332 USA
[5] Georgia Inst Technol, Computat Percept Lab, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Place recognition; scene recognition; visual descriptor; Census Transform; SIFT; Gist; SIMULTANEOUS LOCALIZATION; CLASSIFICATION; SHAPE;
D O I
10.1109/TPAMI.2010.224
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
CENsus TRansform hISTogram (CENTRIST), a new visual descriptor for recognizing topological places or scene categories, is introduced in this paper. We show that place and scene recognition, especially for indoor environments, require its visual descriptor to possess properties that are different from other vision domains (e.g., object recognition). CENTRIST satisfies these properties and suits the place and scene recognition task. It is a holistic representation and has strong generalizability for category recognition. CENTRIST mainly encodes the structural properties within an image and suppresses detailed textural information. Our experiments demonstrate that CENTRIST outperforms the current state of the art in several place and scene recognition data sets, compared with other descriptors such as SIFT and Gist. Besides, it is easy to implement and evaluates extremely fast.
引用
收藏
页码:1489 / 1501
页数:13
相关论文
共 50 条
  • [1] Color CENTRIST: Embedding color information in scene categorization
    Chu, Wei-Ta
    Chen, Chih-Hao
    Hsu, Han-Nung
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2014, 25 (05) : 840 - 854
  • [2] Freak Descriptor With Spatial Pyramid Kernel For Scene Categorization
    Yao, Qiong
    Xu, Xiang
    [J]. PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON MECHATRONICS, ELECTRONIC, INDUSTRIAL AND CONTROL ENGINEERING, 2015, 8 : 126 - 129
  • [3] Scene categorization at large visual eccentricities
    Boucart, Muriel
    Moroni, Christine
    Thibaut, Miguel
    Szaffarczyk, Sebastien
    Greene, Michelle
    [J]. VISION RESEARCH, 2013, 86 : 35 - 42
  • [4] Scene categorization at large visual eccentricities
    Boucart, M.
    Thibaut, M.
    Moroni, C.
    Greene, M.
    Szaffarczyk, S.
    [J]. PERCEPTION, 2012, 41 : 228 - 228
  • [5] Visual descriptors for scene categorization: experimental evaluation
    Wei, Xue
    Son Lam Phung
    Bouzerdoum, Abdesselam
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2016, 45 (03) : 333 - 368
  • [6] Region Contextual Visual Words for scene categorization
    Liu, Shuoyan
    Xu, De
    Feng, Songhe
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (09) : 11591 - 11597
  • [7] Visual descriptors for scene categorization: experimental evaluation
    Xue Wei
    Son Lam Phung
    Abdesselam Bouzerdoum
    [J]. Artificial Intelligence Review, 2016, 45 : 333 - 368
  • [8] Scene categorization via contextual visual words
    Qin, Jianzhao
    Yung, Nelson H. C.
    [J]. PATTERN RECOGNITION, 2010, 43 (05) : 1874 - 1888
  • [9] LEARNING DISCRIMINATIVE VISUAL DICTIONARY FOR NATURAL SCENE CATEGORIZATION
    Huang, Ying
    Wang, Wenmin
    Wang, Ronggang
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 1329 - 1333
  • [10] Scene Categorization by Introducing Contextual Information to the Visual Words
    Qiu, Jianzhao
    Yung, Nelson H. C.
    [J]. ADVANCES IN VISUAL COMPUTING, PT 1, PROCEEDINGS, 2009, 5875 : 297 - 306