On doubly critical coupled systems involving fractional Laplacian with partial singular weight

被引:4
|
作者
Yang, Tao [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
doubly critical exponents; fractional Laplacian; improved Sobolev inequality; partial singular weight; partially weighted Morrey space; system; CRITICAL SOBOLEV; MORREY SPACES; INEQUALITIES; EXISTENCE; EQUATIONS;
D O I
10.1002/mma.7637
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the doubly critical coupled systems involving fractional Laplacian in Double-struck capital Rn with partial singular weight: {(-Delta)(s)u - gamma(1)u/vertical bar x 'vertical bar 2s = vertical bar u vertical bar(2s*(beta)-2)u/vertical bar x 'vertical bar beta + eta(1)/2(s)*(alpha) vertical bar u vertical bar(eta 1-2)u vertical bar v vertical bar(eta 2)/vertical bar x 'vertical bar(alpha), (-Delta)(s)v - gamma(2)v/vertical bar x 'vertical bar(2s) = vertical bar v vertical bar(2s*(beta))-2(v)/vertical bar x 'vertical bar(beta) + eta(2)/2(s)*(alpha) vertical bar v vertical bar(eta 2-2)v vertical bar u vertical bar(eta 1)/vertical bar x 'vertical bar(alpha), (0.1) where s is an element of (0, 1), 0 <= alpha, beta < 2s < n, 0 < m < n, x=(x ',x '')is an element of R-m x Rn-m, eta(1), eta(2) > 1, eta(1) + eta(2) =2(s)*(alpha) := 2(n-alpha)/n - 2s, gamma(1), gamma(2) < gamma(H), and gamma(H) = gamma(H)(n, m, s) > 0 is some explicit constant. By establishing new embedding results involving partially weighted Morrey norms in the product space (H) overd dot(s)(R-n) x (H) overd dot(s)(R-n), we provide sufficient conditions under which a weak nontrivial solution of (0.1) exists via variational methods. We also extend these results to p-Laplacian systems especially.
引用
收藏
页码:13448 / 13467
页数:20
相关论文
共 50 条
  • [1] On critical systems involving fractional Laplacian
    Guo, Zhenyu
    Luo, Senping
    Zou, Wenming
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (01) : 681 - 706
  • [2] Fractional Laplacian system involving doubly critical nonlinearities in RN
    Wang, Li
    Zhang, Binlin
    Zhang, Haijin
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (57) : 1 - 17
  • [3] ON SINGULAR EQUATIONS INVOLVING FRACTIONAL LAPLACIAN
    Ahmed YOUSSFI
    Ghoulam OULD MOHAMED MAHMOUD
    ActaMathematicaScientia, 2020, 40 (05) : 1289 - 1315
  • [4] On Singular Equations Involving Fractional Laplacian
    Ahmed Youssfi
    Ghoulam Ould Mohamed Mahmoud
    Acta Mathematica Scientia, 2020, 40 : 1289 - 1315
  • [5] On Singular Equations Involving Fractional Laplacian
    Youssfi, Ahmed
    Ould Mohamed Mahmoud, Ghoulam
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (05) : 1289 - 1315
  • [6] A system of equations involving the fractional p-Laplacian and doubly critical nonlinearities
    Bhakta, Mousomi
    Perera, Kanishka
    Firoj, S. K.
    ADVANCED NONLINEAR STUDIES, 2023, 23 (01)
  • [7] POSITIVE LEAST ENERGY SOLUTIONS FOR k-COUPLED CRITICAL SYSTEMS INVOLVING FRACTIONAL LAPLACIAN
    Yin, Xin
    Zou, Wenming
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (06): : 1995 - 2023
  • [8] CRITICAL SYSTEM INVOLVING FRACTIONAL LAPLACIAN
    Zhen, Maoding
    He, Jinchun
    Xu, Haoyun
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (01) : 237 - 253
  • [9] ON THE NONLINEAR EIGENVALUE PROBLEMS INVOLVING THE FRACTIONAL p-LAPLACIAN OPERATOR WITH SINGULAR WEIGHT
    Harcha, H.
    Chakrone, O.
    Tsouli, N.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2022, 2022
  • [10] ON THE NONLINEAR EIGENVALUE PROBLEMS INVOLVING THE FRACTIONAL p-LAPLACIAN OPERATOR WITH SINGULAR WEIGHT
    Harcha, H.
    Chakrone, O.
    Tsouli, N.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2022, 2022