Molecular challenges imposed by MHC-I restricted long epitopes on T cell immunity

被引:27
|
作者
Josephs, Tracy M. [1 ,2 ,3 ]
Grant, Emma J. [1 ,2 ,4 ]
Gras, Stephanie [1 ,2 ,3 ]
机构
[1] Monash Univ, Infect & Immun Program, Biomed Discovery Inst, Clayton, Vic 3800, Australia
[2] Monash Univ, Dept Biochem & Mol Biol, Biomed Discovery Inst, Clayton, Vic 3800, Australia
[3] Monash Univ, Australian Res Council Ctr Excellence Adv Mol Ima, Clayton, Vic 3800, Australia
[4] Cardiff Univ, Inst Infect & Immun, Sch Med, Cardiff CF14 4XN, S Glam, Wales
基金
澳大利亚研究理事会; 英国医学研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
antigen presentation; human leukocyte antigen; major histocompatibility complex; T cell receptor recognition; tumor peptide; viral peptide; COMPLEX CLASS-I; BULGED VIRAL PEPTIDE; HLA MICROPOLYMORPHISM; RECEPTOR RECOGNITION; IMPACT; REPERTOIRE; RESPONSES; SELF; IMMUNODOMINANCE; SPECIFICITY;
D O I
10.1515/hsz-2016-0305
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
It has widely been accepted that major histocompatibility complex class I molecules (MHC-I) are limited to binding small peptides of 8-10 residues in length. However, this consensus has recently been challenged with the identification of longer peptides (>= 11 residues) that can also elicit cytotoxic CD8 (+) T cell responses. Indeed, a growing number of studies demonstrate that these non-canonical epitopes are important targets for the immune system. As long epitopes represent up to 10% of the peptide repertoire bound to MHC-I molecules, here we review their impact on antigen presentation by MHC-I, TCR recognition, and T cell immunity.
引用
收藏
页码:1027 / 1036
页数:10
相关论文
共 50 条
  • [1] MHC-I prediction using a combination of T cell epitopes and MHC-I binding peptides
    Vider-Shalit, Tal
    Louzoun, Yoram
    JOURNAL OF IMMUNOLOGICAL METHODS, 2011, 374 (1-2) : 43 - 46
  • [2] A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes
    Manoj Bhasin
    G P S Raghava
    Journal of Biosciences, 2007, 32 : 31 - 42
  • [3] A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes
    Bhasin, Manoi
    Raghava, G. P. S.
    JOURNAL OF BIOSCIENCES, 2007, 32 (01) : 31 - 42
  • [4] Steering MHC-I restricted T cells towards the NKT developmental pathway
    Georgiev, H.
    Hogquist, K.
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2019, 49 : 27 - 28
  • [5] In vivo experimental validation of the novel online tool NAP-CNB, a platform to predict MHC-I restricted T cell tumor epitopes in mice
    Mendez-Perez, Almudena
    Wert-Carvajal, Carlos
    Sanchez-Garcia, Ruben
    Macias, Jose R.
    Sanz-Pamplona, Rebeca
    Angel Fernandez, Luis
    Alemany, Ramon
    Veiga, Esteban
    Sorzano, Carlos Oscar S.
    Munoz-Barrutia, Arrate
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2021, 51 : 393 - 393
  • [6] Characterization of Antigenic MHC-Class-I-Restricted T Cell Epitopes in the Glycoprotein of Ebolavirus
    Powlson, Jonathan
    Wright, Daniel
    Zeltina, Antra
    Giza, Mark
    Nielsen, Morten
    Rampling, Tommy
    Venkatrakaman, Navin
    Bowden, Thomas A.
    Hill, Adrian V. S.
    Ewer, Katie J.
    CELL REPORTS, 2019, 29 (09): : 2537 - +
  • [7] A combination of epitope prediction and molecular docking allows for good identification of MHC class I restricted T-cell epitopes
    Zhang, Xue Wu
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2013, 45 : 30 - 35
  • [8] Different routes of MHC-I delivery to phagosomes and their consequences to CD8 T cell immunity
    Blander, J. Magarian
    SEMINARS IN IMMUNOLOGY, 2023, 66
  • [9] Oncolytic adenoviruses coated with MHC-I tumor epitopes increase the antitumor immunity and efficacy against melanoma
    Capasso, Cristian
    Hirvinen, Mari
    Garofalo, Mariangela
    Romaniuk, Dmitrii
    Kuryk, Lukasz
    Sarvela, Teea
    Vitale, Andrea
    Antopolsky, Maxim
    Magarkar, Aniket
    Viitala, Tapani
    Suutari, Teemu
    Bunker, Alex
    Yliperttula, Marjo
    Urtti, Arto
    Cerullo, Vincenzo
    ONCOIMMUNOLOGY, 2016, 5 (04):
  • [10] Benchmarking predictions of MHC class I restricted T cell epitopes in a comprehensively studied model system
    Paul, Sinu
    Croft, Nathan
    Purcell, Anthony W.
    Tscharke, David C.
    Sette, Alessandro
    Nielsen, Morten
    Peters, Bjoern
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (05)