Temperature-dependent photoluminescence in Ge: Experiment and theory

被引:13
|
作者
Menendez, Jose [1 ]
Poweleit, Christian D. [1 ]
Tilton, Sean E. [1 ]
机构
[1] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
关键词
INTERVALLEY DEFORMATION POTENTIALS; RADIATIVE RECOMBINATION; OPTICAL-ABSORPTION; RAMAN-SCATTERING; FREE-EXCITON; ENERGY-GAP; LINE-SHAPE; SI; PHONON; LUMINESCENCE;
D O I
10.1103/PhysRevB.101.195204
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report a photoluminescence study of high-quality Ge samples at temperatures 12 K <= T <= 295 K, over a spectral range that covers phonon-assisted emission from the indirect gap (between the lowest conduction band at the L point of the Brillouin zone and the top of the valence band at the Gamma point), as well as direct gap emission (from the local minimum of the conduction band at the Gamma point). The spectra display a rich structure with a rapidly changing line shape as a function of T. A theory is developed to account for the experimental results using analytical expressions for the contributions from LA, TO, LO, and TA phonons. Coupling of states exactly at the Gamma and L points is forbidden by symmetry for the latter two phonon modes, but becomes allowed for nearby states and can be accounted for using wave-vector dependent deformation potentials. Excellent agreement is obtained between predicted and observed photoluminescence line shapes. A decomposition of the predicted signal in terms of the different phonon contributions implies that near-room temperature indirect optical absorption and emission are dominated by "forbidden" processes, and the deformation potentials for allowed processes are smaller than previously assumed.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Temperature-Dependent Photoluminescence of Graphene Oxide
    S. T. Jadhav
    S. J. Rajoba
    S. A. Patil
    S. H. Han
    L. D. Jadhav
    Journal of Electronic Materials, 2016, 45 : 379 - 385
  • [2] Temperature-Dependent Photoluminescence of Nanostructured ZnO
    Wu, C. X.
    Zhou, M.
    Zhang, S. G.
    Cai, L.
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2013, 5 (02) : 174 - 177
  • [3] Temperature-dependent photoluminescence of polyazomethine films
    Cisowski, Jan
    Mazurak, Zbigniew
    Weszka, Jan
    Hajduk, Barbara
    JOURNAL OF LUMINESCENCE, 2012, 132 (08) : 2098 - 2101
  • [4] Temperature-Dependent Photoluminescence of Graphene Oxide
    Jadhav, S. T.
    Rajoba, S. J.
    Patil, S. A.
    Han, S. H.
    Jadhav, L. D.
    JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (01) : 379 - 385
  • [5] Temperature-dependent photoluminescence in Er-doped Ge-S-Ga glasses
    Ivanova, ZG
    Tonchev, D
    Ganesan, R
    Gopal, ESR
    Kasap, SO
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2005, 7 (04): : 1863 - 1867
  • [6] Temperature-dependent Raman scattering of the Ge
    Zanatta, A. R.
    RESULTS IN PHYSICS, 2020, 19
  • [7] Temperature-dependent photoluminescence in porous amorphous silicon
    Cent Natl de la Recherche, Scientifique, Grenoble, France
    Thin Solid Films, 1-2 (134-137):
  • [8] Temperature-dependent photoluminescence and electroluminescence properties of polysilanes
    Kamata, N
    Aihara, S
    Ishizaka, W
    Umeda, M
    Terunuma, D
    Yamada, K
    Furukawa, S
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1998, 227 : 538 - 542
  • [9] Temperature-dependent photoluminescence in porous amorphous silicon
    Bustarret, E
    Sauvain, E
    Ligeon, M
    Rosenbauer, M
    THIN SOLID FILMS, 1996, 276 (1-2) : 134 - 137
  • [10] Temperature-dependent photoluminescence and electroluminescence properties of polysilanes
    Kamata, N.
    Aihara, S.
    Ishizaka, W.
    Umeda, M.
    Terunuma, D.
    Yamada, K.
    Furukawa, S.
    Journal of Non-Crystalline Solids, 227-230 (Pt A): : 538 - 542