Tbx5 variants disrupt Nav1.5 function differently in patients diagnosed with Brugada or Long QT Syndrome

被引:22
|
作者
Nieto-Marin, Paloma [1 ]
Tinaquero, David [1 ]
Utrilla, Raquel G. [1 ]
Cebrian, Jorge [1 ]
Gonzalez-Guerra, Andres [2 ]
Crespo-Garcia, Teresa [1 ]
Camara-Checa, Anabel [1 ]
Rubio-Alarcon, Marcos [1 ]
Dago, Maria [1 ]
Alfayate, Silvia [1 ]
Filgueiras, David [2 ]
Peinado, Rafael [3 ]
Luis Lopez-Sendon, Jose [3 ]
Jalife, Jose [2 ,4 ,5 ]
Tamargo, Juan [1 ]
Antonio Bernal, Juan [2 ]
Caballero, Ricardo [1 ]
Delpon, Eva [1 ]
机构
[1] Univ Complutense Madrid, Dept Pharmacol & Toxicol, Sch Med, Inst Invest Gregorio Maranon,CIBERCV, Madrid 28040, Spain
[2] CIBERCV, Fdn Ctr Nacl Invest Cardiovasc, Madrid 28029, Spain
[3] Hosp Univ La Paz, Inst Invest Sanitaria Paz, Dept Cardiol, CIBERCV, Madrid 28046, Spain
[4] Univ Michigan, Dept Internal Med, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Mol & Integrat Physiol, Ann Arbor, MI 48109 USA
关键词
Tbx5; Nav1.5; Ca-calmodulin kinase II; beta(IV)-spectrin; Inherited arrhythmogenic syndromes; HOLT-ORAM-SYNDROME; EXPRESSION; GENE; MUTATIONS; HEART; COMPLEX; SODIUM; EXCITABILITY; PHENOTYPE; MULTIPLE;
D O I
10.1093/cvr/cvab045
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims The transcription factor Tbx5 controls cardiogenesis and drives Scn5a expression in mice. We have identified two variants in TBX5 encoding p. D111Y and p. F206L Tbx5, respectively, in two unrelated patients with structurally normal hearts diagnosed with long QT (LQTS) and Brugada (BrS) syndrome. Here, we characterized the consequences of each variant to unravel the underlying disease mechanisms. Methods and results We combined clinical analysis with in vivo and in vitro electrophysiological and molecular techniques in human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs), HL-1 cells, and cardiomyocytes from mice trans-expressing human wild-type (WT) or mutant proteins. Tbx5 increased transcription of SCN5A encoding cardiac Nav1.5 channels, while repressing CAMK2D and SPTBN4 genes encoding Ca/calmodulin kinase II delta (CaMKII delta) and beta(IV)-spectrin, respectively. These effects significantly increased Na current (I-Na) in hiPSC-CMs and in cardiomyocytes from mice trans-expressing Tbx5. Consequently, action potential (AP) amplitudes increased and QRS interval narrowed in the mouse electrocardiogram. p. F206L Tbx5 bound to the SCN5A promoter failed to transactivate it, thus precluding the pro-transcriptional effect of WT Tbx5. Therefore, p. F206L markedly decreased I-Na in hiPSC-CM, HL-1 cells and mouse cardiomyocytes. The I-Na decrease in p. F206L trans-expressing mice translated into QRS widening and increased flecainide sensitivity. p. D111Y Tbx5 increased SCN5A expression but failed to repress CAMK2D and SPTBN4. The increased CaMKII delta and beta(IV)-spectrin significantly augmented the late component of I-Na (I-NaL) which, in turn, significantly prolonged AP duration in both hiPSC-CMs and mouse cardiomyocytes. Ranolazine, a selective I-NaL inhibitor, eliminated the QT and QTc intervals prolongation seen in p. D111Y trans-expressing mice. Conclusions In addition to peak I-Na, Tbx5 critically regulates I-NaL and the duration of repolarization in human cardiomyocytes. Our original results suggest that TBX5 variants associate with and modulate the intensity of the electrical phenotype in LQTS and BrS patients. [GRAPHICS] .
引用
收藏
页码:1046 / 1060
页数:15
相关论文
共 38 条
  • [1] Unexpected α-α Interactions With NaV1.5 Genetic Variants in Brugada Syndrome
    Abriel, Hugues
    Sottas, Valentin
    CIRCULATION-CARDIOVASCULAR GENETICS, 2014, 7 (02): : 97 - 99
  • [2] Differential Thermosensitivity in Nav1.5 Mutations Associated with Long QT and Brugada Syndromes
    Abdelsayed, Mena
    Ruben, Peter C.
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 327A - 328A
  • [3] Abdominal symptoms in patients with long QT syndrome and a "gain of function" mutation in the Nav1.5 sodium channel
    Braak, Breg
    Klooker, Tamira K.
    Scholvinck, Dirk
    Hofman, Nynke
    Wilde, Arthur
    Boeckxstaens, Guy E.
    GASTROENTEROLOGY, 2008, 134 (04) : A683 - A683
  • [4] Abdominal symptoms in patients with the Brugada syndrome and a "loss of function" mutation in the Nav1.5 sodium channel
    Braak, Breg
    Klooker, Tamira K.
    Al Kassab, Niran
    Hofman, Nynke
    Wilde, Arthur A.
    Boeckxstaens, Guy E.
    GASTROENTEROLOGY, 2007, 132 (04) : A266 - A266
  • [5] Enhanced Classification of Brugada Syndrome-Associated and Long-QT Syndrome-Associated Genetic Variants in the SCN5A-Encoded Nav1.5 Cardiac Sodium Channel
    Kapplinger, Jamie D.
    Giudicessi, John R.
    Ye, Dan
    Tester, David J.
    Callis, Thomas E.
    Valdivia, Carmen R.
    Makielski, Jonathan C.
    Wilde, Arthur A.
    Ackerman, Michael J.
    CIRCULATION-CARDIOVASCULAR GENETICS, 2015, 8 (04) : 582 - 595
  • [6] Nav1.5/R1193Q polymorphism is associated with both long QT and Brugada syndromes
    Huang, H
    Zhao, J
    Barrane, FZ
    Champagne, J
    Chahine, M
    CANADIAN JOURNAL OF CARDIOLOGY, 2006, 22 (04) : 309 - 313
  • [7] Nadolol Block of Nav1.5 Does Not Explain Its Efficacy in the Long QT Syndrome
    Besana, Alessandra
    Wang, Dao W.
    George, Alfred L., Jr.
    Schwartz, Peter J.
    JOURNAL OF CARDIOVASCULAR PHARMACOLOGY, 2012, 59 (03) : 249 - 253
  • [8] A missense mutation in the Tbx5 transcription factor causes long QT syndrome
    Caballero, R.
    Nieto-Marin, P.
    Garcia-Utrilla, R.
    Alfayate, S.
    Tinaquero, D.
    Gonzalez-Guerra, A.
    Armada, E.
    Peinado, R.
    Merino, J. L.
    Lopez-Sendon, J. L.
    Tamargo, J.
    Bernal, J. A.
    Delpon, E.
    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2018, 48 : 59 - 60
  • [9] Alterations of Nedd4-2-binding capacity in PY-motif of NaV1.5 channel underlie long QT syndrome and Brugada syndrome
    Wang, Ya
    Du, Yuan
    Luo, Ling
    Hu, Peijing
    Yang, Guodong
    Li, Tao
    Han, Xiu
    Ma, Aiqun
    Wang, Tingzhong
    ACTA PHYSIOLOGICA, 2020, 229 (02)
  • [10] Effects of Mexiletine on a Race-specific Mutation in Nav1.5 Associated With Long QT Syndrome
    Wu, Xin
    Li, Yawei
    Hong, Liang
    FRONTIERS IN PHYSIOLOGY, 2022, 13