Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives

被引:69
|
作者
Bauer, C. [1 ]
Sharma, A. K. [2 ]
Willer, U. [1 ,2 ]
Burgmeier, J. [1 ]
Braunschweig, B. [2 ]
Schade, W. [1 ,2 ]
Blaser, S. [3 ]
Hvozdara, L. [3 ]
Mueller, A. [3 ]
Holl, G. [4 ]
机构
[1] Tech Univ Clausthal, LaserAnwendungsCtr, D-38678 Clausthal Zellerfeld, Germany
[2] Tech Univ Clausthal, Inst Phys & Phys Technol, D-38678 Clausthal Zellerfeld, Germany
[3] Alpes Lasers SA, CH-2000 Neuchatel, Switzerland
[4] Wehrwissensch Inst Werk Explos & Betriebsstoffe, D-53913 Grosses Cent, Heimerzheim Swi, Germany
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2008年 / 92卷 / 03期
关键词
D O I
10.1007/s00340-008-3134-z
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical methods are well-established for trace gas detection in many applications, such as industrial process control or environmental sensing. Consequently, they gain much interest in the discussion of sensing methods for counterterrorism, e.g., the detection of explosives. Explosives as well as their decomposition products possess strong absorption features in the mid-infrared (MIR) spectral region between lambda = 5 and 11 mu m. In this report we present two different laser spectroscopic approaches based on quantum cascade lasers (QCLs) operating at wavelengths around lambda = 5 and 8 mu m, respectively. Stand-off configuration for the remote detection of nitro-based explosives (e.g., trinitrotoluene, TNT) and a fiber coupled sensor device for the detection of triacetone triperoxide (TATP) are discussed.
引用
收藏
页码:327 / 333
页数:7
相关论文
共 50 条
  • [1] Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives
    C. Bauer
    A.K. Sharma
    U. Willer
    J. Burgmeier
    B. Braunschweig
    W. Schade
    S. Blaser
    L. Hvozdara
    A. Müller
    G. Holl
    Applied Physics B, 2008, 92 : 327 - 333
  • [2] Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives
    Bauer, C.
    Geiser, P.
    Burgmeier, J.
    Holl, G.
    Schade, W.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2006, 85 (2-3): : 251 - 256
  • [3] Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives
    C. Bauer
    P. Geiser
    J. Burgmeier
    G. Holl
    W. Schade
    Applied Physics B, 2006, 85 : 251 - 256
  • [4] MID-INFRARED LIDAR FOR REMOTE DETECTION OF EXPLOSIVES
    Bauer, Christoph
    Burgmeier, Joerg
    Bohling, Christian
    Schade, Wolfgang
    Holl, Gerhard
    STAND-OFF DETECTION OF SUICIDE BOMBERS AND MOBILE SUBJECTS, 2006, : 127 - +
  • [5] Mid-Infrared Laser Spectroscopy Detection and Quantification of Explosives in Soils Using Multivariate Analysis and Artificial Intelligence
    Pacheco-Londono, Leonardo C.
    Warren, Eric
    Galan-Freyle, Nataly J.
    Villarreal-Gonzalez, Reynaldo
    Aparicio-Bolano, Joaquin A.
    Ospina-Castro, Maria L.
    Shih, Wei-Chuan
    Hernandez-Rivera, Samuel P.
    APPLIED SCIENCES-BASEL, 2020, 10 (12):
  • [6] High speed mid infrared detection of explosives using laser spectroscopy
    Hofmann, A.
    Lambrecht, A.
    STAND-OFF DETECTION OF SUICIDE BOMBERS AND MOBILE SUBJECTS, 2006, : 51 - +
  • [7] Explosive vapor detection via mid-infrared laser spectroscopy
    Effenberger, FJ
    Mercado, AG
    ELECTRO-OPTICAL TECHNOLOGY FOR REMOTE CHEMICAL DETECTION AND IDENTIFICATION III, 1998, 3383 : 104 - 112
  • [8] Classical Least Squares-Assisted Mid-Infrared (MIR) Laser Spectroscopy Detection of High Explosives on Fabrics
    Pacheco-Londono, Leonardo C.
    Aparicio-Bolano, Joaquin A.
    Galan-Freyle, Nataly J.
    Roman-Ospino, Andres D.
    Ruiz-Caballero, Jose L.
    Hernandez-Rivera, Samuel P.
    APPLIED SPECTROSCOPY, 2019, 73 (01) : 17 - 29
  • [9] Mid-infrared laser applications in spectroscopy
    Tittel, FK
    Richter, D
    Fried, A
    SOLID-STATE MID-INFRARED LASER SOURCES, 2003, 89 : 445 - 510
  • [10] Methane leak detection by tunable laser spectroscopy and mid-infrared imaging
    Strahl, Thomas
    Herbst, Johannes
    Lambrecht, Armin
    Maier, Eric
    Steinebrunner, Jonas
    Woellenstein, Juergen
    APPLIED OPTICS, 2021, 60 (15) : C68 - C75