ON DISTORTION IN GROUPS OF HOMEOMORPHISMS

被引:2
|
作者
Gal, Swiatoslaw R. [1 ]
Kedra, Jarek [2 ,3 ]
机构
[1] Uniwersytetu Wroclawskiego, Instytut Matematyczny, PL-50384 Wroclaw, Poland
[2] Univ Aberdeen, Inst Math, Aberdeen AB24 3UE, Scotland
[3] Uniwersytet Szczecinski, Instytut Matematyki, PL-70451 Szczecin, Poland
基金
瑞士国家科学基金会;
关键词
Distortion in groups; rotation number; groups of homeomorphisms; invariant measures;
D O I
10.3934/jmd.2011.5.609
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a path-connected topological space admitting a universal cover. Let Homeo(X, a) denote the group of homeomorphisms of X preserving a degree one cohomology class a. We investigate the distortion in Homeo(X, a). Let g is an element of Homeo(X, a). We define a Nielsen-type equivalence relation on the space of g-invariant Borel probability measures on X and prove that if a homeomorphism g admits two nonequivalent invariant measures then it is undistorted. We also define a local rotation number of a homeomorphism generalizing the notion of the rotation of a homeomorphism of the circle. Then we prove that a homeomorphism is undistorted if its rotation number is nonconstant.
引用
收藏
页码:609 / 622
页数:14
相关论文
共 50 条