A Convolution-Free Mixed Finite-Element Time-Domain Method for General Nonlinear Dispersive Media

被引:12
|
作者
Abraham, David S. [1 ]
Giannacopoulos, Dennis D. [1 ]
机构
[1] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 0E9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Dispersive media; finite-element methods; nonlinear media; time-domain analysis; VECTOR WAVE-EQUATION; MAXWELL EQUATIONS;
D O I
10.1109/TAP.2018.2874798
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a mixed finite-element time-domain (FETD) method is presented for the simulation of electrically complex materials, including general combinations of linear dispersion, instantaneous nonlinearity, and dispersive nonlinearity. Using both edge and face elements, the presented method offers greater geometric flexibility than existing finite-difference time-domain (FDTD) implementations, and in contrast to existing nonlinear FETD methods, also incorporates both linear and nonlinear material dispersions. Dielectric nonlinearity is incorporated into the Crank-Nicolson mixed FETD formulation via a straightforward Newton-Raphson approach, for which the associated Jacobian is derived. Moreover, the dispersion is modeled via the Mobius z transform method, yielding a simpler more general algorithm. The method's accuracy and convergence are verified, and its capability demonstrated via the simulation of several nonlinear phenomena, including temporal and spatial solitons in two spatial dimensions.
引用
收藏
页码:324 / 334
页数:11
相关论文
共 50 条
  • [1] A Convolution-Free Finite-Element Time-Domain Method for the Nonlinear Dispersive Vector Wave Equation
    Abraham, David S.
    Giannacopoulos, Dennis D.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (12)
  • [2] A Parallel Finite-Element Time-Domain Method for Nonlinear Dispersive Media
    Abraham, David S.
    Giannacopoulos, Dennis D.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2020, 56 (02)
  • [3] Time-domain finite-element modeling of dispersive media
    Jiao, D
    Jin, JM
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2001, 11 (05) : 220 - 222
  • [4] Mixed finite-element time-domain method for transient Maxwell equations in doubly dispersive media
    Donderici, Burkay
    Teixeira, Fernando L.
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2008, 56 (01) : 113 - 120
  • [5] Semi-analytical recursive convolution finite-element time-domain method for electromagnetic analysis of dispersive media
    Li, Linqian
    Wei, Bing
    Yang, Qian
    Ge, Debiao
    [J]. OPTIK, 2020, 206
  • [6] A Perfectly Matched Layer for the Nonlinear Dispersive Finite-Element Time-Domain Method
    Abraham, David S.
    Giannacopoulos, Dennis D.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (06)
  • [7] Auxiliary differential equation finite-element time-domain method for electromagnetic analysis of dispersive media
    Li, Linqian
    Wei, Bing
    Yang, Qian
    Ge, Debiao
    [J]. OPTIK, 2019, 184 : 189 - 196
  • [8] Unconditionally Stable Time-Domain Mixed Finite-Element Method
    Crawford, Zane D.
    Li, Jie
    Christlieb, Andrew
    Shanker, B.
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2017, : 1789 - 1790
  • [9] Shift-operator finite-element time-domain dealing with dispersive media
    Li, Linqian
    Wei, Bing
    Yang, Qian
    Ge, Debiao
    [J]. OPTIK, 2019, 182 : 832 - 838
  • [10] A General Time-Domain Finite-Element Method for Frequency-Domain Solutions
    Fu, W. N.
    Zhang, Xiu
    Ho, S. L.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (04) : 1284 - 1289