New Runge-Kutta based schemes for ODEs with cheap global error estimation

被引:6
|
作者
Makazaga, J [1 ]
Murua, A [1 ]
机构
[1] Univ Basque Country, EHU, UPV, Informat Fak, Bilbao, Spain
关键词
Runge-Kutta methods; global error estimation; variable step-size strategy;
D O I
10.1023/B:BITN.0000007056.32638.fb
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a particular 5th order one-step integrator for ODEs that provides an estimation of the global error. It's based on the class of one-step integrator for ODEs of Murua and Makazaga considered as a generalization of the globally embedded RK methods of Dormand, Gilmore and Prince. The scheme we present cheaply gives useful information on the behavior of the global error. Some numerical experiments show that the estimation of the global error reflects the propagation of the true global error. Moreover we present a new step-size adjustment strategy that takes advantage of the available information about the global error. The new strategy is specially suitable for problems with exponential error growth.
引用
收藏
页码:595 / 610
页数:16
相关论文
共 50 条
  • [1] New Runge–Kutta Based Schemes for ODEs with Cheap Global Error Estimation
    J. Makazaga
    A. Murua
    BIT Numerical Mathematics, 2003, 43 : 595 - 610
  • [2] Cheap global error estimation in some Runge-Kutta pairs
    Kulikov, Gennady Yu.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (01) : 136 - 163
  • [3] Cheap error estimation for Runge-Kutta methods
    Tsitouras, C
    Papakostas, SN
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (06): : 2067 - 2088
  • [4] GLOBAL ERROR ESTIMATION WITH RUNGE-KUTTA METHODS
    DORMAND, JR
    DUCKERS, RR
    PRINCE, PJ
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1984, 4 (02) : 169 - 184
  • [5] GLOBAL ERROR ESTIMATION WITH RUNGE-KUTTA TRIPLES
    DORMAND, JR
    LOCKYER, MA
    MCGORRIGAN, NE
    PRINCE, PJ
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1989, 18 (09) : 835 - 846
  • [6] ERROR ESTIMATION IN RUNGE-KUTTA PROCEDURES
    CALL, DH
    REEVES, RF
    COMMUNICATIONS OF THE ACM, 1958, 1 (09) : 7 - 9
  • [7] A parallel algorithm for the estimation of the global error in Runge-Kutta methods
    Tirani, R
    NUMERICAL ALGORITHMS, 2002, 31 (1-4) : 311 - 318
  • [8] GLOBAL ERROR ESTIMATION WITH RUNGE-KUTTA METHODS .2.
    DORMAND, JR
    PRINCE, PJ
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1985, 5 (04) : 481 - 497
  • [9] Global error estimation with adaptive explicit Runge-Kutta methods
    Calvo, M
    Higham, DJ
    Montijano, JI
    Randez, L
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1996, 16 (01) : 47 - 63
  • [10] RUNGE-KUTTA METHODS WITH GLOBAL ERROR ESTIMATES
    DALLERIVE, L
    PASCIUTTI, F
    JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1975, 16 (03): : 381 - 386