Atomic layer deposited aluminum oxynitride coating for high-performance Si anode in lithium-ion batteries

被引:16
|
作者
Zhu, Hongzheng [1 ]
Shiraz, Mohammad Hossein Aboonasr [1 ]
Liu, Liang [1 ,2 ]
Zhang, Yue [1 ]
Liu, Jian [1 ]
机构
[1] Univ British Columbia, Sch Engn, Fac Sci Appl, Kelowna, BC V1V IV7, Canada
[2] Jiangsu Univ, Automot Engn Res Inst, Zhenjiang 212013, Jiangsu, Peoples R China
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
Silicon anode; Aluminum oxynitride; Lithium-ion batteries; Atomic layer deposition; SILICON NANOPARTICLES; GRAPHENE OXIDE; LITHIATION; BEHAVIOR; FRACTURE; FILMS;
D O I
10.1016/j.apsusc.2021.151982
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon (Si) has received great attention as a promising anode material for lithium-ion batteries (LIBs) due to its high gravimetric capacity and large abundance. However, the use of Si anodes in LIBs has been hindered by their inferior electrochemical performance, resulting from its vast volume expansion and unstable solid electrolyte interphase (SEI). To address these problems, a novel surface coating material, aluminum oxynitride (AlOxNy), was developed using a plasma-enhanced atomic layer deposition technique with trimethylaluminum and plasma N-2/H-2 as the precursors. The effects of AlOxNy surface coatings on the electrochemical properties of Si electrodes were investigated. With the optimal AlOxNy coating (similar to 2 nm), the reversible capacity after 140 cycles was improved from 331 mAh g(-1) for bare Si electrode to 1297 mAh g(-1) for AlOxNy-coated one, and the capacity retention was elevated from 13% to 72%. Post-cycling analysis revealed that the AlOxNy coating significantly suppressed the charge transfer and SEI resistances and maintained the structural integration of Si electrodes by suppressing continuous electrolyte decomposition and electrode delamination from the current collector. This study provides a new perspective on designing advanced functional coating materials for atomic layer deposition for lithium-ion batteries.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Engineering High-Performance SiOx Anode Materials with a Titanium Oxynitride Coating for Lithium-Ion Batteries
    Lai, Guoyong
    Wei, Xiujuan
    Zhou, Binbin
    Huang, Xiuhuan
    Tang, Weiting
    Wu, Shuxing
    Lin, Zhan
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (44) : 49830 - 49838
  • [2] A review of the carbon coating of the silicon anode in high-performance lithium-ion batteries
    Xu, Ze-Yu
    Shao, Hai-Bo
    Wang, Jian-Ming
    Xinxing Tan Cailiao/New Carbon Materials, 2024, 39 (05): : 896 - 917
  • [3] Emerging Atomic Layer Deposition for the Development of High-Performance Lithium-Ion Batteries
    Sina Karimzadeh
    Babak Safaei
    Chris Yuan
    Tien-Chien Jen
    Electrochemical Energy Reviews, 2023, 6
  • [4] Emerging Atomic Layer Deposition for the Development of High-Performance Lithium-Ion Batteries
    Karimzadeh, Sina
    Safaei, Babak
    Yuan, Chris
    Jen, Tien-Chien
    ELECTROCHEMICAL ENERGY REVIEWS, 2023, 6 (01)
  • [5] Atomic layer deposition of ZnO on carbon black as nanostructured anode materials for high-performance lithium-ion batteries
    Lu, Songtao
    Wang, Huanhuan
    Zhou, Jia
    Wu, Xiaohong
    Qin, Wei
    NANOSCALE, 2017, 9 (03) : 1184 - 1192
  • [6] High-performance self-organized Si nanocomposite anode for lithium-ion batteries
    Xiuyun Zhao
    Dingguo Xia
    Lin Gu
    Juncheng Yue
    Biao Li
    Hang Wei
    Huijun Yan
    Ruqiang Zou
    Yingxia Wang
    Xiayan Wang
    Ze Zhang
    Jixue Li
    Journal of Energy Chemistry, 2014, (03) : 291 - 300
  • [7] High-performance self-organized Si nanocomposite anode for lithium-ion batteries
    Zhao, Xiuyun
    Xia, Dingguo
    Gu, Lin
    Yue, Juncheng
    Li, Biao
    Wei, Hang
    Yan, Huijun
    Zou, Ruqiang
    Wang, Yingxia
    Wang, Xiayan
    Zhang, Ze
    Li, Jixue
    JOURNAL OF ENERGY CHEMISTRY, 2014, 23 (03) : 291 - 300
  • [8] High-performance self-organized Si nanocomposite anode for lithium-ion batteries
    Xiuyun Zhao
    Dingguo Xia
    Lin Gu
    Juncheng Yue
    Biao Li
    Hang Wei
    Huijun Yan
    Ruqiang Zou
    Yingxia Wang
    Xiayan Wang
    Ze Zhang
    Jixue Li
    Journal of Energy Chemistry, 2014, 23 (03) : 291 - 300
  • [9] Nanostructured anode materials for high-performance lithium-ion batteries
    Xie, Jingjie
    Yin, Jing
    Xu, Lan
    Ahmed, Adnan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1008
  • [10] High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries
    Jun Lu
    Zhongwei Chen
    Feng Pan
    Yi Cui
    Khalil Amine
    Electrochemical Energy Reviews, 2018, 1 : 35 - 53