Canonical Moments for Optimal Uncertainty Quantification on a Variety

被引:0
|
作者
Stenger, Jerome [1 ,2 ]
Gamboa, Fabrice [1 ]
Keller, Merlin [2 ]
Iooss, Bertrand [1 ,2 ]
机构
[1] Inst Math Toulouse, 118 Route Narbonne, Toulouse, France
[2] EDF R&D, 6 Quai Watier, Chatou, France
来源
关键词
Canonical moments; Optimal uncertainty quantification; Robustness;
D O I
10.1007/978-3-030-26980-7_59
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The purpose of this work is to optimize an affine functional over positive measures. More precisely, we deal with a probability of failure (P.O.F). The optimization is realized over a set of distributions satisfying moment constraints, called moment set. The optimum is to be found on an extreme point of this moment set. Winkler's classification of those extreme points states they are finite discrete measures. The set of the support points of all discrete measures in the moment set is a manifold over which the P.O.F is optimized. We characterize the manifold's structure by proving it is an algebraic variety. It is the zero locus of polynomials defined thanks to the canonical moments. This reduces a highly constrained optimization over the moment set onto a constraint free manifold.
引用
收藏
页码:571 / 578
页数:8
相关论文
共 50 条
  • [1] OPTIMAL UNCERTAINTY QUANTIFICATION OF A RISK MEASUREMENT FROM A THERMAL-HYDRAULIC CODE USING CANONICAL MOMENTS
    Stenger, J.
    Gamboa, F.
    Keller, M.
    Iooss, B.
    [J]. INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2020, 10 (01) : 35 - 53
  • [2] An Improved Algorithm for Convex Optimal Uncertainty Quantification with Polytopic Canonical Form
    Li Ming
    Wen Chenglin
    [J]. 2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 1822 - 1826
  • [3] Optimal Uncertainty Quantification
    Owhadi, H.
    Scovel, C.
    Sullivan, T. J.
    McKerns, M.
    Ortiz, M.
    [J]. SIAM REVIEW, 2013, 55 (02) : 271 - 345
  • [4] Uncertainty quantification and optimal decisions
    Farmer, C. L.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2200):
  • [5] CONVEX OPTIMAL UNCERTAINTY QUANTIFICATION
    Han, Shuo
    Tao, Molei
    Topcu, Ufuk
    Owhadi, Houman
    Murray, Richard M.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (03) : 1368 - 1387
  • [6] On signal moments and uncertainty relations associated with linear canonical transform
    Zhao, Juan
    Tao, Ran
    Wang, Yue
    [J]. SIGNAL PROCESSING, 2010, 90 (09) : 2686 - 2689
  • [7] Optimal uncertainty quantification with model uncertainty and legacy data
    Kamga, P. -H. T.
    Li, B.
    McKerns, M.
    Nguyen, L. H.
    Ortiz, M.
    Owhadi, H.
    Sullivan, T. J.
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2014, 72 : 1 - 19
  • [8] On convergence of moments in uncertainty quantification based on direct quadrature
    Attar, Peter J.
    Vedula, Prakash
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2013, 111 : 119 - 125
  • [9] OPTIMAL DESIGNS FOR TRIGONOMETRIC AND POLYNOMIAL REGRESSION USING CANONICAL MOMENTS
    LAU, TS
    STUDDEN, WJ
    [J]. ANNALS OF STATISTICS, 1985, 13 (01): : 383 - 394
  • [10] Uncertainty quantification of metallic microstructures using principal image moments
    Senthilnathan, Arulmurugan
    Javaheri, Iman
    Zhao, Hengduo
    Sundararaghavan, Veera
    DeGraef, Marc
    Acar, Pinar
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2022, 215