SCARF: A Semantic Constrained Attention Refinement Network for Semantic Segmentation

被引:14
|
作者
Ding, Xiaofeng [1 ]
Shen, Chaomin [2 ,3 ]
Che, Zhengping [4 ]
Zeng, Tieyong [5 ]
Peng, Yaxin [1 ]
机构
[1] Shanghai Univ, Sch Sci, Dept Math, Shanghai, Peoples R China
[2] East China Normal Univ, Sch Comp Sci, Shanghai, Peoples R China
[3] East China Normal Univ, Shanghai Key Lab Multidimens Informat Proc, Shanghai, Peoples R China
[4] Didi Chuxing, Beijing, Peoples R China
[5] Chinese Univ Hong Kong, Hong Kong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
10.1109/ICCVW54120.2021.00335
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semantic segmentation has achieved great progress by exploiting the contextual dependencies. In this paper, we propose an end-to-end Semantic Constrained Attention Re-Finement (SCARF) network, based on semantic constrained contextual dependencies, to fully utilize the semantic information across different layers. Our novelties lie in the following aspects: Firstly, we present a general framework for capturing the non-local contextual dependencies. Secondly, within the framework, we introduce an efficient Category Attention (CA) block to capture semantic-related context by using the category constraint from coarse segmentation, which reduces the computational complexity from O(n(2)) to O(n) for image with n pixels. Thirdly, we overcome the contextual information confusion problem by balancing the non-local contextual dependencies and the local consistency adaptively using a category-wise learning weight. Finally, we fully utilize the multi-scale semantic-related contextual information by refining the segmentation iteratively across layers with semantic constraint. Extensive evaluations demonstrate that our SCARF network significantly improves the segmentation results and achieves superior performance 85.0% mIoU on PASCAL VOC 2012, 55.0% mIoU on PASCAL Context, and 82.1% mIoU on Cityscapes.
引用
收藏
页码:3002 / 3011
页数:10
相关论文
共 50 条
  • [1] Contextual Attention Refinement Network for Real-Time Semantic Segmentation
    Hao, Shijie
    Zhou, Yuan
    Zhang, Youming
    Guo, Yanrong
    [J]. IEEE ACCESS, 2020, 8 (08): : 55230 - 55240
  • [2] Attention Guided Global Enhancement and Local Refinement Network for Semantic Segmentation
    Li, Jiangyun
    Zha, Sen
    Chen, Chen
    Ding, Meng
    Zhang, Tianxiang
    Yu, Hong
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 3211 - 3223
  • [3] RFNet: A Refinement Network for Semantic Segmentation
    Zhu, Guilin
    Wang, Runmin
    Han, Chang
    Liu, Yingying
    Ding, Yajun
    Liu, Minghao
    Liu, Li
    Sang, Nong
    [J]. 2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 670 - 676
  • [4] Bilateral attention network for semantic segmentation
    Wang, Dongli
    Li, Nanjun
    Zhou, Yan
    Mu, Jinzhen
    [J]. IET IMAGE PROCESSING, 2021, 15 (08) : 1607 - 1616
  • [5] CROSS ATTENTION NETWORK FOR SEMANTIC SEGMENTATION
    Liu, Mengyu
    Yin, Hujun
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2434 - 2438
  • [6] Embedded Attention Network for Semantic Segmentation
    Lv, Qingxuan
    Feng, Mingzhe
    Sun, Xin
    Dong, Junyu
    Chen, Changrui
    Zhang, Yu
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (01): : 326 - 333
  • [7] Dynamic attention network for semantic segmentation
    Wu, Fei
    Chen, Feng
    Jing, Xiao-Yuan
    Hu, Chang-Hui
    Ge, Qi
    Ji, Yimu
    [J]. NEUROCOMPUTING, 2020, 384 (384) : 182 - 191
  • [8] ARNET:ATTENTION-BASED REFINEMENT NETWORK FOR FEW-SHOT SEMANTIC SEGMENTATION
    Li, Rusheng
    Liu, Hanhui
    Zhu, Yuesheng
    Bai, Zhiqiang
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 2238 - 2242
  • [9] Efficient Attention Pyramid Network for Semantic Segmentation
    Yang, Qirui
    Ku, Tao
    Hu, Kunyuan
    [J]. IEEE ACCESS, 2021, 9 : 18867 - 18875
  • [10] Grouped Double Attention Network for Semantic Segmentation
    Chen Xiaolong
    Zhao Ji
    Chen Siyi
    Du Xinhao
    Liu Xin
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (22)