An Extended Query Performance Prediction Framework Utilizing Passage-Level Information

被引:7
|
作者
Roitman, Haggai [1 ]
机构
[1] IBM Res, Haifa, Israel
关键词
D O I
10.1145/3234944.3234946
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We show that document-level post-retrieval query performance prediction (QPP) methods are mostly suited for short query prediction tasks; such methods perform significantly worse in verbose (long and informative) query prediction settings. To address the prediction quality gap among query lengths, we propose a novel passage-level post-retrieval QPP framework. Our empirical analysis demonstrates that, those QPP methods that utilize passage-level information are much better suited for verbose QPP settings. Moreover, our proposed predictors, which utilize both document-level and passage-level information provide a more robust prediction which is less sensitive to query length.
引用
收藏
页码:35 / 42
页数:8
相关论文
共 22 条
  • [1] Query Performance Prediction using Passage Information
    Roitman, Haggai
    [J]. ACM/SIGIR PROCEEDINGS 2018, 2018, : 893 - 896
  • [2] Utilizing passage-level relevance and kernel pooling for enhancing BERT-based document reranking
    Pan, Min
    Zhou, Shuting
    Li, Teng
    Liu, Yu
    Pei, Quanli
    Huang, Angela J.
    Huang, Jimmy X.
    [J]. COMPUTATIONAL INTELLIGENCE, 2024, 40 (03)
  • [3] A Relative Information Gain-based Query Performance Prediction Framework with Generated Query Variants
    Datta, Suchana
    Ganguly, Debasis
    Mitra, Mandar
    Greene, Derek
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2023, 41 (02)
  • [4] Information Needs, Queries, and Query Performance Prediction
    Zendel, Oleg
    Shtok, Anna
    Rabier, Fiana
    Kurland, Oren
    Culpepper, J. Shane
    [J]. PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), 2019, : 395 - 404
  • [5] A Geometric Framework for Query Performance Prediction in Conversational Search
    Faggioli, Guglielmo
    Ferro, Nicola
    Muntean, Cristina Ioana
    Perego, Raffaele
    Tonellotto, Nicola
    [J]. PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 1355 - 1365
  • [6] Information Retrieval Based on Pseudo Prediction Query Performance
    Gong, Yu-Xi
    Zhang, Min-Xia
    Luo, Rong
    [J]. PROCEEDINGS OF THE FIRST INTERNATIONAL WORKSHOP ON EDUCATION TECHNOLOGY AND COMPUTER SCIENCE, VOL II, 2009, : 283 - 286
  • [7] Query Performance Prediction and Classification for Information Search Systems
    Zhang, Zhongmin
    Chen, Jiawei
    Wu, Shengli
    [J]. WEB AND BIG DATA (APWEB-WAIM 2018), PT I, 2018, 10987 : 277 - 285
  • [8] A Unified Framework for Post-Retrieval Query-Performance Prediction
    Kurland, Oren
    Shtok, Anna
    Carmel, David
    Hummel, Shay
    [J]. ADVANCES IN INFORMATION RETRIEVAL THEORY, 2011, 6931 : 15 - +
  • [9] A predictive maintenance scheduling framework utilizing residual life prediction information
    You, Ming-Yi
    Meng, Guang
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2013, 227 (03) : 185 - 197
  • [10] Towards Query Performance Prediction for Neural Information Retrieval: Challenges and Opportunities
    Faggioli, Guglielmo
    Formal, Thibault
    Lupart, Simon
    Marchesin, Stefano
    Clinchant, Stephane
    Ferro, Nicola
    Piwowarski, Benjamin
    [J]. PROCEEDINGS OF THE 2023 ACM SIGIR INTERNATIONAL CONFERENCE ON THE THEORY OF INFORMATION RETRIEVAL, ICTIR 2023, 2023, : 51 - 63