Preparation and Effect of (3-aminopropyl)triethoxysilane-Coated LiNi0.5Co0.2Mn0.3O2 Cathode Material for Lithium Ion Batteries

被引:3
|
作者
Shin, Mi-Ra [1 ]
Lee, Seon-Jin [1 ]
Kim, Seong-Jae [2 ]
Hong, Tae-Whan [3 ]
机构
[1] Korea Natl Univ Transportat, Dept Nano Polymer Sci & Engn, Chungju 27469, South Korea
[2] Dong A Univ, Dept Mech Engn, Busan 49315, South Korea
[3] Korea Natl Univ Transportat, Dept Mat Sci & Engn, Chungju 27469, South Korea
关键词
APTES; LiNi0.5Co0.2Mn0.3O2; Electron-Rich Coating Layer; ELECTROCHEMICAL PROPERTIES; PERFORMANCES; STABILITY; BEHAVIOR;
D O I
10.1166/jnn.2020.17406
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface coating using (3-aminopropyl)triethoxysilane (APTES) has been applied to improve the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode materials. The APTES coating layer on the surface of NCM523 protects the direct contact area between the cathode material and the electrolyte, and facilitates the presence of electrons through the abundance of electron-rich amine groups, thereby improving electrochemical performance. X-ray photoelectron spectroscopy confirmed the existence of APTES coating layers on the surface of NCM523 cathode materials, revealing three peaks-N1s, O1 s, and Si1s-that were not identified in bare NCM523. In addition, the discharge capacities of the bare electrode and the APTES-coated NCM523 electrode were 121.06 mAh/g and 156.43 mAh/g, respectively. To the best of our knowledge, the use of an APTES coating on NCM523 cathode materials for lithium-ion batteries has never been reported.
引用
收藏
页码:3460 / 3465
页数:6
相关论文
共 50 条
  • [1] Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries
    Jung, Sung-Kyun
    Gwon, Hyeokjo
    Hong, Jihyun
    Park, Kyu-Young
    Seo, Dong-Hwa
    Kim, Haegyeom
    Hyun, Jangsuk
    Yang, Wooyoung
    Kang, Kisuk
    ADVANCED ENERGY MATERIALS, 2014, 4 (01)
  • [2] Effect of Calcining Temperatures on the Electrochemical Performances of LiNi0.5Co0.2Mn0.3O2 Cathode Material for Lithium Ion Batteries
    Wang, Xiaoman
    Zhang, Hai-Lang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (01): : 1 - 11
  • [4] Regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries
    Zhou, Hongming
    Zhao, Xiuxiu
    Yin, Chengjie
    Li, Jian
    ELECTROCHIMICA ACTA, 2018, 291 : 142 - 150
  • [5] The effect of drying methods on the structure and performance of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium-ion batteries
    Zhang, Yang
    Cui, Can
    He, Yao
    Liu, Jie
    Song, Ye
    Song, Zheng
    Xu, Heng
    Huang, Shanshan
    Bei, Yiying
    MATERIALS CHEMISTRY AND PHYSICS, 2021, 262
  • [6] Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries
    Tang, Xiaodong
    Guo, Qiankun
    Zhou, Miaomiao
    Zhong, Shengwen
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2021, 40 : 278 - 286
  • [7] A Novel Perspective on Surface Modification of LiNi0.5Co0.2Mn0.3O2 Cathode Material for Lithium-Ion Batteries
    Zhang, Yang
    Song, Ye
    Liu, Lin
    Ma, Juanjuan
    Liu, Jie
    CHEMELECTROCHEM, 2022, 9 (18)
  • [8] Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries
    Xiaodong Tang
    Qiankun Guo
    Miaomiao Zhou
    Shengwen Zhong
    Chinese Journal of Chemical Engineering, 2021, 40 (12) : 278 - 286
  • [9] Resynthesis and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 from spent cathode material of lithium-ion batteries
    Liu, Pengcheng
    Xiao, Li
    Tang, Yiwei
    Zhu, Yirong
    Chen, Han
    Chen, Yifeng
    VACUUM, 2018, 156 : 317 - 324
  • [10] Effects of LaPO4 coating on the performance of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batteries
    Jiang, Xiaodong
    Yuan, Zhentao
    Liu, Jianxiong
    Jin, Xin
    Jin, Liying
    Dong, Peng
    Zhang, Yingjie
    Yao, Yuhan
    Cheng, Qi
    Liu, Cheng
    Zhang, Yannan
    Yu, Xiaohua
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (03): : 2341 - 2354