Learning to Compress Using Deep AutoEncoder

被引:0
|
作者
Li, Qing [1 ]
Chen, Yang [2 ,3 ]
机构
[1] Western Digital Res, Milpitas, CA 95035 USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Michigan Inst Data Sci, Ann Arbor, MI 48109 USA
关键词
rate distortion; lossy source coding; Restricted Boltzmann Machine; Deep Auto-Encoder; Deep Belief Network; Blahut-Arimoto algorithm; CODES; INFORMATION;
D O I
10.1109/allerton.2019.8919866
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A novel deep learning framework for lossy compression is proposed. The framework is based on Deep AutoEncoder (DAE) stacked of Restricted Boltzmann Machines (RBMs), which form Deep Belief Networks (DBNs). The proposed DAE compression scheme is one variant of the known fixed-distortion scheme, where the distortion is fixed and the compression rate is left to optimize. The fixed distortion is achieved by the DBN Blahut-Arimoto algorithm to approximate the Nth-order rate distortion approximating posterior. The trained DBNs are then unrolled to create a DAE, which produces an encoder and a reproducer. The unrolled DAE is fine-tuned with back-propagation through the whole autoencoder to minimize reconstruction errors.
引用
收藏
页码:930 / 936
页数:7
相关论文
共 50 条
  • [1] A quantum autoencoder: using machine learning to compress qutrits
    Pepper, Alex
    Tischler, Nora
    Pryde, Geoff J.
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR), 2020,
  • [2] To Compress, or Not to Compress: Characterizing Deep Learning Model Compression for Embedded Inference
    Qin, Qing
    Ren, Jie
    Yu, Jialong
    Gao, Ling
    Wang, Hai
    Zheng, Jie
    Feng, Yansong
    Fang, Jianbin
    Wang, Zheng
    2018 IEEE INT CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, UBIQUITOUS COMPUTING & COMMUNICATIONS, BIG DATA & CLOUD COMPUTING, SOCIAL COMPUTING & NETWORKING, SUSTAINABLE COMPUTING & COMMUNICATIONS, 2018, : 729 - 736
  • [3] A Malware Detection Approach Using Autoencoder in Deep Learning
    Xing, Xiaofei
    Jin, Xiang
    Elahi, Haroon
    Jiang, Hai
    Wang, Guojun
    IEEE ACCESS, 2022, 10 : 25696 - 25706
  • [4] SHAPE RETRIEVAL USING DEEP AUTOENCODER LEARNING REPRESENTATION
    Xu, Guoqing
    Fang, Weiwei
    2016 13TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2016, : 227 - 230
  • [5] A Deep Learning Approach for Detecting Malware Using Autoencoder
    Panchagnula, Venu Madhav
    Satya Keerthi, N.V.L.Ch.
    Surekha, S.
    Sujatha, R.
    Veeraiah, Duggineni
    Ramesh, Eluri
    Lakshmi, B.
    IAENG International Journal of Computer Science, 2024, 51 (08) : 1051 - 1059
  • [6] A deep learning approach to network intrusion detection using deep autoencoder
    Moraboena S.
    Ketepalli G.
    Ragam P.
    Rev. Intell. Artif., 4 (457-463): : 457 - 463
  • [7] Dynamic background modeling using deep learning autoencoder network
    Gracewell, Jeffin
    John, Mala
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (7-8) : 4639 - 4659
  • [8] Dynamic background modeling using deep learning autoencoder network
    Jeffin Gracewell
    Mala John
    Multimedia Tools and Applications, 2020, 79 : 4639 - 4659
  • [9] Tensor decomposition to compress convolutional layers in deep learning
    Wang, Yinan
    Guo, Weihong Grace
    Yue, Xiaowei
    IISE TRANSACTIONS, 2022, 54 (05) : 481 - 495
  • [10] Spontaneous Concept Learning with Deep Autoencoder
    Dolgikh, Serge
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2019, 12 (01) : 1 - 12