On multidegrees of tame and wild automorphisms of C3

被引:8
|
作者
Karas, Marek [1 ]
Zygadlo, Jakub [2 ]
机构
[1] Uniwersytetu Jagiellonskiego, Inst Matematyki, PL-30348 Krakow, Poland
[2] Uniwersytetu Jagiellonskiego, Inst Informatyki, PL-30348 Krakow, Poland
关键词
D O I
10.1016/j.jpaa.2011.04.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we show that the set mdeg(Aut(C-3))\mdeg(Tame(C-3)) is not empty, where mdeg denotes multidegree. Moreover we show that this set has infinitely many elements. Since for Nagata's famous example N of a wild automorphism, mdegN = (5, 3, 1) epsilon mdeg(Tame(C-3)). and since for other known examples of wild automorphisms the multidegree is of the form (1, d(2), d(3)) (after permutation if necessary), we give the very first example of a wild automorphism F of C-3 with mdegF is not an element of mdeg(Tame(C-3)). We also show that, if d(1),d(2) are odd numbers such that gcd (d(1), d(2)) = 1, then (d(1), d(2), d(3)) epsilon mdeg(Tame(C-3)) if and only if d(3) epsilon d(1)N d(2)N. This a crucial fact that we use in the proof of the main result. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2843 / 2846
页数:4
相关论文
共 50 条