Conditional Distributions for Quantum Systems

被引:2
|
作者
Parzygnat, Arthur J. [1 ]
机构
[1] Inst Hautes Etud Sci, Bures Sur Yvette, France
基金
欧洲研究理事会;
关键词
Bayes; inference; Markov category; operator system; positive map; quantum information theory; quantum probability; recovery map; Tomita-Takesaki modular group; ALGEBRAS;
D O I
10.4204/EPTCS.343.1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Conditional distributions, as defined by the Markov category framework, are studied in the setting of matrix algebras (quantum systems). Their construction as linear unital maps are obtained via a categorical Bayesian inversion procedure. Simple criteria establishing when such linear maps are positive are obtained. Several examples are provided, including the standard EPR scenario, where the EPR correlations are reproduced in a purely compositional (categorical) manner. A comparison between the Bayes map, the Petz recovery map, and the Leifer-Spekkens acausal belief propagation is provided, illustrating some similarities and key differences.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] Entropy of conditional tomographic probability distributions for classical and quantum systems
    Man'ko, Margarita A.
    Man'ko, Vladimir I.
    [J]. 6TH INTERNATIONAL WORKSHOP DICE2012 SPACETIME - MATTER - QUANTUM MECHANICS: FROM THE PLANCK SCALE TO EMERGENT PHENOMENA, 2013, 442
  • [2] CONDITIONAL COMBINATIONS OF QUANTUM SYSTEMS
    Svitek, Miroslav
    [J]. NEURAL NETWORK WORLD, 2011, 21 (01) : 67 - 73
  • [3] Conditional probability distributions of finite absorbing quantum walks
    Kuklinski, Parker
    [J]. PHYSICAL REVIEW A, 2020, 101 (03)
  • [4] Description of random fields by systems of conditional distributions
    Khachatryan, L. A.
    [J]. ARMENIAN JOURNAL OF MATHEMATICS, 2022, 14 (08): : 1 - 40
  • [5] Conditional entropy and information in quantum systems
    Levitin, LB
    [J]. 1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 88 - 88
  • [6] Conditional entropy and information in quantum systems
    Levitin, L.B.
    [J]. Chaos, solitons and fractals, 1999, 10 (10): : 1651 - 1656
  • [7] Conditional entropy and information in quantum systems
    Levitin, LB
    [J]. CHAOS SOLITONS & FRACTALS, 1999, 10 (10) : 1651 - 1656
  • [8] De Finetti Theorems for Quantum Conditional Probability Distributions with Symmetry
    Sven Jandura
    Ernest Y.-Z. Tan
    [J]. Annales Henri Poincaré, 2024, 25 : 2213 - 2250
  • [9] De Finetti Theorems for Quantum Conditional Probability Distributions with Symmetry
    Jandura, Sven
    Tan, Ernest Y. -Z.
    [J]. ANNALES HENRI POINCARE, 2024, 25 (04): : 2213 - 2250
  • [10] QUANTUM CONDITIONAL LOGICAL ENTROPY OF DYNAMICAL SYSTEMS
    Ebrahimzadeh, Abolfazl
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2016, (36): : 879 - 886