On rough set and fuzzy sublattice

被引:34
|
作者
Estaji, Ali Akbar [1 ]
Khodaii, Somayeh [1 ]
Bahrami, Solmaz [1 ]
机构
[1] Sabzevar Tarbiat Moallem Univ, Dept Math, Sabzevar, Iran
关键词
Rough set; Upper and lower approximations; Lattice; Fuzzy sublattice; Fuzzy prime ideal; UPPER APPROXIMATIONS; IDEALS;
D O I
10.1016/j.ins.2011.04.043
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let L be a lattice with the least element 0 and the greatest element 1 and let theta be a full congruence relation on L. In this paper, the notion of theta-upper and theta-lower approximations of a fuzzy subset of L is introduced and some important properties will be studied. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3981 / 3994
页数:14
相关论文
共 50 条
  • [1] Rough fuzzy sublattice
    Li, Q.-G. (liqingguoli@yahoo.com.cn), 1600, Hunan University (39):
  • [2] Compatibility rough-fuzzy set and compatibility fuzzy-rough set
    Hu, SS
    He, YQ
    Zhang, M
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 : 1922 - 1928
  • [3] Fuzzy and rough set - Combining fuzzy set and rough setfor inductive learning
    Jing, H
    Lu, JG
    Feng, S
    INTELLIGENT INFORMATION PROCESSING II, 2005, 163 : 143 - 146
  • [4] Rough mereology: A rough set paradigm for unifying rough set theory and fuzzy set theory
    Polkowski, L
    FUNDAMENTA INFORMATICAE, 2003, 54 (01) : 67 - 88
  • [5] A rough set paradigm for unifying rough set theory and fuzzy set theory
    Polkowski, L
    ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, 2003, 2639 : 70 - 77
  • [6] On rough fuzzy set algebras
    Wu, Wei-Zhi
    Xu, You-Hong
    FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2006, 4223 : 256 - 265
  • [7] An extension of rough fuzzy set
    Zhai, Junhai
    Zhang, Sufang
    Zhang, Yao
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 30 (06) : 3311 - 3320
  • [8] Fuzzy Binary Rough Set
    Syau, Yu-Ru
    Lin, En-Bing
    Liau, Churn-Jung
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2020, 28 (02) : 317 - 329
  • [10] A rough set solution to a fuzzy set problem
    Bean, CL
    Kambhampati, C
    Rajasekharan, S
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, 2002, : 18 - 23