A NON-DIFFERENTIABLE SOLUTION FOR THE LOCAL FRACTIONAL TELEGRAPH EQUATION

被引:0
|
作者
Li, Jie [1 ]
Zhang, Ce [2 ]
Liu, Weixing [1 ]
Zhang, Yuzhu [1 ]
Yang, Aimin [1 ]
Zhang, Ling [3 ]
机构
[1] North China Univ Sci & Technol, Minist Educ, Key Lab Modern Met Technol, Tangshan, Peoples R China
[2] Harbin Inst Technol Weihai, Sch Comp Sci & Technol, Weihai, Peoples R China
[3] Yanching Inst Technol, Dev Planning Dept, Sanhe, Peoples R China
来源
THERMAL SCIENCE | 2017年 / 21卷
基金
中国国家自然科学基金;
关键词
telegraph equation; analytical solution; local fractional derivative; water wave; local fractional Laplace series expansion method; SERIES EXPANSION METHOD; DIFFUSION EQUATION; CONVEX-FUNCTIONS; INEQUALITIES; TRANSFORM;
D O I
10.2298/TSCI17S1225L
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, we consider the linear telegraph equations with local fractional derivative. The local fractional Laplace series expansion method is used to handle the local fractional telegraph equation. The analytical solution with the non-differentiable graphs is discussed in detail. The proposed method is efficient and accurate.
引用
收藏
页码:S225 / S231
页数:7
相关论文
共 50 条
  • [1] THE NON-DIFFERENTIABLE SOLUTION FOR LOCAL FRACTIONAL LAPLACE EQUATION IN STEADY HEAT-CONDUCTION PROBLEM
    Chen, Jie-Dong
    Li, Hua-Ping
    THERMAL SCIENCE, 2016, 20 : S769 - S772
  • [2] NON-DIFFERENTIABLE SOLUTIONS FOR NON-LINEAR LOCAL FRACTIONAL HEAT CONDUCTION EQUATION
    Zhang, Sheng
    Zheng, Xiaowei
    THERMAL SCIENCE, 2021, 25 (SpecialIssue 2): : S309 - S314
  • [3] NON-DIFFERENTIABLE EXACT SOLUTIONS OF THE LOCAL FRACTIONAL ZAKHAROV-KUZNETSOV EQUATION ON THE CANTOR SETS
    Wang, Kang-Jia
    Shi, Feng
    Si, Jing
    Liu, Jing-Hua
    Wang, Guo-Dong
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (03)
  • [4] On the local fractional derivative of everywhere non-differentiable continuous functions on intervals
    Liu, Cheng-shi
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 42 : 229 - 235
  • [5] Non-differentiable Solutions for Local Fractional Nonlinear Riccati Differential Equations
    Yang, Xiao-Jun
    Srivastava, H. M.
    Torres, Delfim F. M.
    Zhang, Yudong
    FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) : 409 - 417
  • [6] NON-DIFFERENTIABLE EXACT SOLUTIONS OF THE LOCAL FRACTIONAL KLEIN-FOCK-GORDON EQUATION ON CANTOR SETS
    Cheng, Jun
    Yu, Jian Sheng
    Wang, Kang-Jia
    THERMAL SCIENCE, 2023, 27 (2B): : 1653 - 1657
  • [7] Lie Group Classifications and Non-differentiable Solutions for Time-Fractional Burgers Equation
    吴国成
    CommunicationsinTheoreticalPhysics, 2011, 55 (06) : 1073 - 1076
  • [8] Lie Group Classifications and Non-differentiable Solutions for Time-Fractional Burgers Equation
    Wu Guo-Cheng
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 55 (06) : 1073 - 1076
  • [9] On the non-differentiable exact solutions of the (2+1)-dimensional local fractional breaking soliton equation on Cantor sets
    Wang, Kang-Jia
    Si, Jing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (02) : 1456 - 1465
  • [10] Local fractional homotopy analysis method for solving non-differentiable problems on Cantor sets
    Maitama, Shehu
    Zhao, Weidong
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)