Exponential attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity

被引:3
|
作者
Yuan, Jianbo [1 ]
Zhang, Shixuan [1 ,2 ]
Xie, Yongqin [2 ]
Zhang, Jiangwei [2 ]
机构
[1] Changsha Univ Sci & Technol, Sch Traff & Transportat Engn, Changsha 410114, Peoples R China
[2] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 11期
基金
中国国家自然科学基金;
关键词
nonclassical diffusion equation; exponential attractor; arbitrary polynomial growth; fractal dimension; global exponentially kappa-dissipative; ASYMPTOTIC-BEHAVIOR; SEMIGROUPS; DYNAMICS;
D O I
10.3934/math.2021684
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the dynamical behavior of the nonclassical diffusion equation is investigated. First, using the asymptotic regularity of the solution, we prove that the semigroup {S (t)}(t >= 0) corresponding to this equation satisfies the global exponentially kappa-dissipative. And then we estimate the upper bound of fractal dimension for the global attractors A for this equation and A subset of H-0(1)(Omega) boolean AND H-2(Omega). Finally, we confirm the existence of exponential attractors M by validated differentiability of the semigroup {S (t)}(t >= 0). It is worth mentioning that the nonlinearity f satisfies the polynomial growth of arbitrary order.
引用
收藏
页码:11778 / 11795
页数:18
相关论文
共 50 条