Regularization of the singular inverse square potential in quantum mechanics with a minimal length

被引:86
|
作者
Bouaziz, Djamil [1 ]
Bawin, Michel
机构
[1] Univ Liege, Inst Phys B5, B-4000 Liege 1, Belgium
[2] Univ Jijel, Phys Theor Lab, Jijel 18000, Algeria
来源
PHYSICAL REVIEW A | 2007年 / 76卷 / 03期
关键词
UNCERTAINTY RELATION; HYDROGEN-ATOM; DIRAC OSCILLATOR; SPACE; RENORMALIZATION; REPRESENTATION; POSITIONS; PARTICLES; MOMENTA; STATES;
D O I
10.1103/PhysRevA.76.032112
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the problem of the attractive inverse square potential in quantum mechanics with a generalized uncertainty relation. Using the momentum representation, we show that this potential is regular in this framework. We solve analytically the s-wave bound states equation in terms of Heun's functions. We discuss in detail the bound states spectrum for a specific form of the generalized uncertainty relation. The minimal length may be interpreted as characterizing the dimension of the system.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Singular inverse square potential in coordinate space with a minimal length
    Bouaziz, Djamil
    Birkandan, Tolga
    ANNALS OF PHYSICS, 2017, 387 : 62 - 74
  • [2] Singular inverse square potential in arbitrary dimensions with a minimal length: Application to the motion of a dipole in a cosmic string background
    Bouaziz, Djamil
    Bawin, Michel
    PHYSICAL REVIEW A, 2008, 78 (03):
  • [3] Regularization of the Dirac δ potential with minimal length
    Ferkous, N.
    PHYSICAL REVIEW A, 2013, 88 (06):
  • [4] Potential well and step potential within the framework of minimal length quantum mechanics
    H. Hassanabadi
    S. Zarrinkamar
    E. Maghsoodi
    The European Physical Journal Plus, 128
  • [5] Potential well and step potential within the framework of minimal length quantum mechanics
    Hassanabadi, H.
    Zarrinkamar, S.
    Maghsoodi, E.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2013, 128 (11):
  • [6] Anyons in quantum mechanics with a minimal length
    Fabien Buisseret
    The European Physical Journal Plus, 132
  • [7] Position in Minimal Length Quantum Mechanics
    Bosso, Pasquale
    UNIVERSE, 2022, 8 (01)
  • [8] Anyons in quantum mechanics with a minimal length
    Buisseret, Fabien
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (02):
  • [9] Quantum Tunneling in Deformed Quantum Mechanics with Minimal Length
    Guo, Xiaobo
    Lv, Bochen
    Tao, Jun
    Wang, Peng
    ADVANCES IN HIGH ENERGY PHYSICS, 2016, 2016
  • [10] Regularization of Quantum Tunneling of Singular Potential Barrier
    G. A. Muradyan
    Journal of Contemporary Physics (Armenian Academy of Sciences), 2019, 54 : 333 - 337