On Flexible Algebras Satisfying x(yz) = y(zx)

被引:7
|
作者
Behn, Antonio [2 ]
Correa, Ivan [1 ]
Hentzel, Irvin Roy [3 ]
机构
[1] Tokyo Metropolitana Cs Educ, Dept Matemat, Santiago, Chile
[2] Univ Chile, Fac Ciencias, Dept Matemat, Santiago, Chile
[3] Iowa State Univ, Dept Math, Ames, IA 50011 USA
关键词
flexible; nilpotent; nil-algebra; semiprime;
D O I
10.1142/S1005386710000829
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study flexible algebras (possibly infinite-dimensional) satisfying the polynomial identity x(yz) = y(zx). We prove that in these algebras, products of five elements are associative and commutative. As a consequence of this, we get that when such an algebra is a nil-algebra of bounded nil-index, it is nilpotent. Furthermore, we obtain optimal bounds for the index of nilpotency. Another consequence that we get is that these algebras are associative when they are semiprime.
引用
收藏
页码:881 / 886
页数:6
相关论文
共 50 条
  • [1] Flexible right-nilalge bras satisfying x(yz) = y(zx)
    Correa, I
    Non-Associative Algebra and Its Applications, 2006, 246 : 103 - 107
  • [2] Semiprimality and nilpotency of nonassociative rings satisfying x(yz) = y(zx)
    Behn, Antonio
    Correa, Ivan
    Hentzel, Irvin Roy
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (01) : 132 - 141
  • [3] RINGS WITH X(YZ)=Y(ZX)
    KLEINFELD, M
    COMMUNICATIONS IN ALGEBRA, 1995, 23 (13) : 5085 - 5093
  • [4] SIMPLE NONCOMMUTATIVE JORDAN ALGEBRAS SATISFYING ([X, Y], Y, Y)=0
    SCHAFER, RD
    JOURNAL OF ALGEBRA, 1994, 169 (01) : 194 - 199
  • [5] x+y+z≥xy+yz+zx的加权推广及其应用
    肖振纲
    数学教学研究, 1990, (03) : 31 - 33
  • [6] x2+y2+z2≥xy+yz+zx的应用
    漆效群
    中学数学, 1986, (04) : 31 - 31
  • [7] COMMUTATIVE ALGEBRAS SATISFYING IDENTITY x3y = 0
    Bayara, Joseph
    Ouedraogo, Poussyan Patrice
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2025, 64 (01): : 27 - 46
  • [8] Composition algebras satisfying the flexible law
    Elduque, A
    Myung, HC
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (05) : 1997 - 2013
  • [9] Predictions for the X(YZ) and X(YZ) with X(4160), Y(3940), Z(3930)
    Liang, Wei-Hong
    Molina, R.
    Xie, Ju-Jun
    Doering, M.
    Oset, E.
    EUROPEAN PHYSICAL JOURNAL A, 2015, 51 (05):
  • [10] TRIVIALITY OF LAW (XY)(ZX)=YZ
    LIN, YF
    MCWATERS, MM
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1972, 5 (AUG): : 276 - &