Uniqueness on linear difference polynomials of meromorphic functions

被引:2
|
作者
Zhang, Ran Ran [1 ]
Chen, Chuang Xin [2 ]
Huang, Zhi Bo [3 ]
机构
[1] Guangdong Univ Educ, Dept Math, Guangzhou 510303, Peoples R China
[2] Zhongkai Univ Agr & Engn, Coll Computat Sci, Guangzhou 510225, Peoples R China
[3] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 04期
基金
中国国家自然科学基金;
关键词
Nevanlinna theory; meromorphic functions; uniqueness; linear difference polynomial; deficiency; SHARE; VALUES;
D O I
10.3934/math.2021230
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that f(z) is a meromorphic function with hyper order sigma(2)(f) < 1. Let L(z, f) = b(1)(z)f (z + c(1)) + b(2)(z)f (z + c(2)) + ... + b(n)(z) f (z + c(n)) be a linear difference polynomial, where b(1)(z), b(2)(z), ..., b(n)(z) are nonzero small functions relative to f(z), and c(1), c(2), ..., c(n) are distinct complex numbers. We investigate the uniqueness results about f(z) and L(z, f) sharing small functions. These results promote the existing results on differential cases and difference cases of Bruck conjecture. Some sufficient conditions to show that f(z) and L(z, f) cannot share some small functions are also presented.
引用
收藏
页码:3874 / 3888
页数:15
相关论文
共 50 条