A novel fibrinolytic enzyme from Cordyceps militaris was produced by submerged culture fermentation, purified, and biochemically characterized. The enzyme was purified to homogeneity, with an overall yield of 4.0% and a specific activity of 1682 U/mg. The molecular weight and pI of the enzyme were 32 kDa and 9.3 +/- 0.2, respectively. The optimal pH and temperature of the enzyme were 7.4 and 37 degrees C, respectively. The enzyme activity was inhibited by Fe2+, phenylmethane sulfonyl fluoride (PMSF), aprotinin, and pepstatin but not by N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) and ethylenediamine tetracetic acid (EDTA). Three internal peptides of the enzyme, APQALTVAAVGATWAR, EKNVGSTVNLLSYDGNK, and TDATSVLLDGYNVSAVNDLVAK, were obtained. The enzyme could hydrolyze fibrin(ogen) directly and cleave the alpha-chains more efficiently than beta- and gamma-chains, suggesting that it is a plasmin like protein. It degraded thrombin, which indicated that it can act as an anticoagulant and prevent thrombosis. Intravascular thrombosis is one of the major reasons of cardiovascular diseases. On the basis of these results, the purified enzyme can be developed as a natural agent for oral fibrinolytic therapy or prevention of thrombosis.