Contact curves on cones

被引:0
|
作者
Canonero, G
Gallarati, D
Serpico, ME
机构
[1] Univ Genoa, Dipartimento & Modelli Matemat, I-16129 Genoa, Italy
[2] Univ Genoa, Dipartimento Matemat, I-16146 Genoa, Italy
关键词
14;
D O I
10.1016/S0022-4049(00)00096-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be an algebraic surface in the projective 3-space and G(0) a surface touching F along the curve C-0 = F boolean AND G(0). We develop a special algorithm to find all algebraic surfaces touching F along any algebraic curve C linked to C-0. Then, after observing that on an algebraic non-singular cone F of degree less than or equal to 4 any curve C is linked to a group of generators, we determine all algebraic surfaces circumscribed about a cone of degree 3 or 4. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:45 / 64
页数:20
相关论文
共 50 条
  • [1] DUALITY OF THE CONES OF DIVISORS AND CURVES
    Choi, Sung Rak
    MATHEMATICAL RESEARCH LETTERS, 2012, 19 (02) : 403 - 416
  • [2] Unwrapping curves from cylinders and cones
    Apostol, Tom M.
    Mnatsakanian, Mamikon A.
    AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (05): : 388 - 416
  • [3] Deformations of cones over hyperelliptic curves
    Stevens, J
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1996, 473 : 87 - 120
  • [4] Quantization of canonical cones of algebraic curves
    Enriquez, B
    Okesskii, A
    ANNALES DE L INSTITUT FOURIER, 2002, 52 (06) : 1629 - +
  • [5] Cones of curves and of line bundles "at infinity"
    Campillo, A
    Piltant, O
    Reguera, AJ
    JOURNAL OF ALGEBRA, 2005, 293 (02) : 513 - 542
  • [6] Extensions of tangent cones of monomial curves
    Huang, I-Chiau
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (10) : 3437 - 3449
  • [7] SYMMETRIC PRODUCTS AS CONES, PEANO CURVES
    Illanes, Alejandro
    Martinez-de-la-Vega, Veronica
    Michalik, Daria
    HOUSTON JOURNAL OF MATHEMATICS, 2019, 45 (04): : 1187 - 1195
  • [8] On the multiplicity of tangent cones of monomial curves
    Sammartano, Alessio
    ARKIV FOR MATEMATIK, 2019, 57 (01): : 215 - 225
  • [9] Contact modes and complementary cones
    Berard, S
    Egan, K
    Trinkle, JC
    2004 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1- 5, PROCEEDINGS, 2004, : 5280 - 5286
  • [10] General considerations on the curves of contact of surfaces with cones, with application to the lines of saturation and binodal lines in ternary systems.
    不详
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1911, 14 : 510 - 524