PULP-NN: A Computing Library for Quantized Neural Network inference at the edge on RISC-V Based Parallel Ultra Low Power Clusters

被引:0
|
作者
Garofalo, Angelo [1 ]
Rusci, Manuele [1 ]
Conti, Francesco [1 ,2 ]
Rossi, Davide [1 ]
Benini, Luca [1 ,2 ]
机构
[1] Univ Bologna, DEI, Bologna, Italy
[2] Swiss Fed Inst Technol, IIS Lab, Zurich, Switzerland
基金
欧盟地平线“2020”;
关键词
D O I
10.1109/icecs46596.2019.8965067
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present PULP-NN, a multicore computing library for a parallel ultra-low-power cluster of RISC-V based processors. The library consists of a set of kernels for Quantized Neural Network (QNN) inference on edge devices, targeting byte and sub-byte data types, down to INT-1. Our software solution exploits the digital signal processing (DSP) extensions available in the PULP RISC-V processors and the cluster's parallelism, improving performance by up to 63x with respect to a baseline implementation on a single RISC-V core implementing the RV32IMC ISA. Using the PULP-NN routines, the inference of a CIFAR-10 QNN model runs in 30x and 19.6x less clock cycles than the current state-of-the-art ARM CMSIS-NN library, running on an STM32L4 and an STM32H7 MCUs, respectively. By running the library kernels on the GAP-8 processor at the maximum efficiency operating point, the energy efficiency on GAP-8 is 14.1x higher than STM32L4 and 39.5x than STM32H7.
引用
收藏
页码:33 / 36
页数:4
相关论文
共 12 条
  • [1] PULP-NN: accelerating quantized neural networks on parallel ultra-low-power RISC-V processors
    Garofalo, Angelo
    Rusci, Manuele
    Conti, Francesco
    Rossi, Davide
    Benini, Luca
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2164):
  • [2] QR-PULP: Streamlining QR Decomposition for RISC-V Parallel Ultra-Low-Power Platforms
    Kiamarzi, Amirhossein
    Rossi, Davide
    Tagliavini, Giuseppe
    PROCEEDINGS OF THE 21ST ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS 2024, CF 2024, 2024, : 147 - 154
  • [3] Epileptic Seizure Detection on an Ultra-Low-Power Embedded RISC-V Processor Using a Convolutional Neural Network
    Bahr, Andreas
    Schneider, Matthias
    Francis, Maria
    Lehmann, Hendrik
    Barg, Igor
    Buschhoff, Anna-Sophia
    Wulff, Peer
    Strunskus, Thomas
    Faupel, Franz
    BIOSENSORS-BASEL, 2021, 11 (07):
  • [4] XpulpNN: Enabling Energy Efficient and Flexible Inference of Quantized Neural Networks on RISC-V Based IoT End Nodes
    Garofalo, Angelo
    Tagliavini, Giuseppe
    Conti, Francesco
    Benini, Luca
    Rossi, Davide
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2021, 9 (03) : 1489 - 1505
  • [5] XpulpNN: Enabling Energy Efficient and Flexible Inference of Quantized Neural Networks on RISC-V based IoT End Nodes
    Garofalo, Angelo
    Tagliavini, Giuseppe
    Conti, Francesco
    Benini, Luca
    Rossi, Davide
    2021 IEEE 28TH SYMPOSIUM ON COMPUTER ARITHMETIC (ARITH 2021), 2021, : 53 - 53
  • [6] A 3 TOPS/W RISC-V Parallel Cluster for Inference of Fine-Grain Mixed-Precision Quantized Neural Networks
    Nadalini, Alessandro
    Rutishauser, Georg
    Burrello, Alessio
    Bruschi, Nazareno
    Garofalo, Angelo
    Benini, Luca
    Conti, Francesco
    Rossi, Davide
    2023 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI, ISVLSI, 2023, : 145 - 150
  • [7] xTern: Energy-Efficient Ternary Neural Network Inference on RISC-V-Based Edge Systems
    Rutishauser, Georg
    Mihali, Joan
    Scherer, Moritz
    Benini, Luca
    2024 IEEE 35TH INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS, ASAP 2024, 2024, : 206 - 213
  • [8] Low DRAM Memory Access and Flexible Dataflow Convolutional Neural Network Accelerator based on RISC-V Custom Instruction
    Chen, Yi-Fan
    Chang, Yu-Jen
    Chiu, Ching-Te
    Huang, Ming-Long
    Liang, Geng-Ming
    Lee, Chao-Lin
    Lee, Jenq-Kuen
    Hsieh, Ping-Yu
    Lai, Wei-Chih
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [9] Low-Power Footprint Inference with a Deep Neural Network offloaded to a Service Robot through Edge Computing
    Silva, Pedro
    Rocha, Rui P.
    38TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2023, 2023, : 800 - 807
  • [10] Memory-efficient Edge-based Non-Neural Face Recognition Algorithm on the Parallel Ultra-Low Power (PULP) Cluster
    Nagar, Mitul Sudhirkumar
    Maiti, Sayantan
    Kumar, Rahul
    Mewada, Hiren
    Engineer, Pinalkumar
    2023 IEEE 16TH INTERNATIONAL SYMPOSIUM ON EMBEDDED MULTICORE/MANY-CORE SYSTEMS-ON-CHIP, MCSOC, 2023, : 347 - 353