Anomaly Detection in Software-Defined Networks Using Cross-Validation

被引:0
|
作者
Krzemien, W. [1 ]
Jedrasiak, K. [1 ]
Nawrat, A. [2 ]
Daniec, K. [2 ]
机构
[1] WSB Univ, Dabrowa Gornicza, Poland
[2] Silesian Tech Univ, Gliwice, Poland
关键词
anomaly detection; software-defined networks; cross-validation; neural networks; XGBoost; MACHINE; FOREST;
D O I
10.1109/ICECET52533.2021.9698645
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The topic of the work was the detection of anomalies in software-defined networks (SDN) with the appropriate selection and use of artificial intelligence algorithms and their parameters. As part of the work, the research was carried out on six sets using the cross-validation method based on the RandomForest, xgboost algorithms and neural networks. The results of detecting attacks on the tested data oscillated on the average level of accuracy from 88.49% to 99.28%. This is a satisfactory result considering the most accurate test results. An innovation in the approach to the problem is that the algorithm works relatively efficiently regardless of the input set, as opposed to the current solutions, where the algorithm is adapted to a dedicated input set.
引用
收藏
页码:250 / 256
页数:7
相关论文
共 50 条
  • [1] Efficient Forwarding Anomaly Detection in Software-Defined Networks
    Li, Qi
    Liu, Yunpeng
    Liu, Zhuotao
    Zhang, Peng
    Pang, Chunhui
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (11) : 2676 - 2690
  • [2] Anomaly and intrusion detection using deep learning for software-defined networks: A survey
    Ruffo, Vitor Gabriel da Silva
    Lent, Daniel Matheus Brandao
    Komarchesqui, Mateus
    Schiavon, Vinicius Ferreira
    de Assis, Marcos Vinicius Oliveira
    Carvalho, Luiz Fernando
    Proenca Jr, Mario Lemes
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 256
  • [3] Athena: A Framework for Scalable Anomaly Detection in Software-Defined Networks
    Lee, Seunghyeon
    Kim, Jinwoo
    Shin, Seungwon
    Porras, Phillip
    Yegneswaran, Vinod
    [J]. 2017 47TH ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS (DSN), 2017, : 249 - 260
  • [4] Generative Adversarial Network Models for Anomaly Detection in Software-Defined Networks
    Zacaron, Alexandro Marcelo
    Lent, Daniel Matheus Brandao
    da Silva Ruffo, Vitor Gabriel
    Carvalho, Luiz Fernando
    Proenca Jr, Mario Lemes
    [J]. JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT, 2024, 32 (04)
  • [5] LOADS: Load Optimization and Anomaly Detection Scheme for Software-Defined Networks
    Chaudhary, Rajat
    Kumar, Neeraj
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (12) : 12329 - 12344
  • [6] Towards an efficient anomaly-based intrusion detection for software-defined networks
    Latah, Majd
    Toker, Levent
    [J]. IET NETWORKS, 2018, 7 (06) : 453 - 459
  • [7] Attack-Specific Feature Selection for Anomaly Detection in Software-Defined Networks
    Abbas, Nadine
    Nasser, Youssef
    Shehab, Maryam
    Sharafeddine, Sanaa
    [J]. 2021 3RD IEEE MIDDLE EAST AND NORTH AFRICA COMMUNICATIONS CONFERENCE (MENACOMM), 2021, : 142 - 146
  • [8] FADE: Detecting Forwarding Anomaly in Software-Defined Networks
    Pang, Chunhui
    Jiang, Yong
    Li, Qi
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2016,
  • [9] An ecosystem for anomaly detection and mitigation in software-defined networking
    Carvalho, Luiz Fernando
    Abrao, Taufik
    Mendes, Leonardo de Souza
    Proenca, Mario Lemes, Jr.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2018, 104 : 121 - 133
  • [10] RADS: a real-time anomaly detection model for software-defined networks using machine learning
    Sneha, M.
    Kumar, A. Keerthan
    Hegde, Nikhil V.
    Anish, A. S.
    Shobha, G.
    [J]. INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2023, 22 (06) : 1881 - 1891