Diffeomorphism covariant representations of the holonomy-flux *-algebra

被引:0
|
作者
Okolow, A
Lewandowski, J
机构
[1] Univ Warsaw, Inst Fiz Teoret, PL-00681 Warsaw, Poland
[2] Penn State Univ, Dept Phys, Ctr Gravitat Phys & Geometry, University Pk, PA 16802 USA
[3] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Golm, Germany
关键词
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recently, Sahlmann (2002 Preprint gr-qc/0207111) proposed a new, algebraic point of view on the loop quantization. He brought up the issue of a star-algebra underlying that framework, studied the algebra consisting of the fluxes and holonomies and characterized its representations. We define the diffeomorphism covariance of a representation of the Sahlmann algebra and study the diffeomorphism covariant representations. We prove they are all given by Sahlmann's decomposition into the cyclic representations of the subalgebra of the holonomies by using a single state only. The state corresponds to the natural measure defined on the space of the generalized connections. This result is a generalization of Sahlmann's result (2002 Preprint gr-qc/0207112) concerning the U(1) case.
引用
收藏
页码:3543 / 3567
页数:25
相关论文
共 50 条
  • [1] Automorphism covariant representations of the holonomy-flux *-algebra
    Okolów, A
    Lewandowski, J
    CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (04) : 657 - 679
  • [2] New diffeomorphism invariant states on a holonomy-flux algebra
    Dziendzikowski, Michal
    Okolow, Andrzej
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (22)
  • [3] Uniqueness of diffeomorphism invariant states on holonomy-flux algebras
    Lewandowski, Jerzy
    Okolow, Andrzej
    Sahlmann, Hanno
    Thiemann, Thomas
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 267 (03) : 703 - 733
  • [4] On Representations of the Quantum Holonomy Diffeomorphism Algebra
    Aastrup, Johannes
    Grimstrup, Jesper Moller
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2019, 67 (04):
  • [5] Poisson brackets in Sobolev spaces: a mock holonomy-flux algebra
    Barbero G, J. Fernando
    Basquens, Marc
    Diaz, Bogar
    Villasenor, Eduardo J. S.
    PHYSICA SCRIPTA, 2022, 97 (12)
  • [6] The quantum holonomy-diffeomorphism algebra and quantum gravity
    Aastrup, Johannes
    Grimstrup, Jesper Moller
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (10):
  • [7] Uniqueness of Diffeomorphism Invariant States on Holonomy–Flux Algebras
    Jerzy Lewandowski
    Andrzej Okołów
    Hanno Sahlmann
    Thomas Thiemann
    Communications in Mathematical Physics, 2006, 267 : 703 - 733
  • [8] Tangent Lie Algebra of a Diffeomorphism Group and Application to Holonomy Theory
    Hubicska, Balazs
    Muzsnay, Zoltan
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (01) : 107 - 123
  • [9] Tangent Lie Algebra of a Diffeomorphism Group and Application to Holonomy Theory
    Balázs Hubicska
    Zoltán Muzsnay
    The Journal of Geometric Analysis, 2020, 30 : 107 - 123
  • [10] COVARIANT REPRESENTATIONS ON THE CALKIN ALGEBRA-I
    LOEBL, R
    SCHOCHET, C
    DUKE MATHEMATICAL JOURNAL, 1978, 45 (04) : 721 - 734