Distances to spaces of affine Baire-one functions

被引:1
|
作者
Spurny, Jiri [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Prague 18675 8, Czech Republic
关键词
L(1)-predual; affine function; Baire-one function; fragmented function; simplex; BANACH-SPACES; L1;
D O I
10.4064/sm199-1-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be a Banach space and let B(1) (B(E*)) and u(1) (B(E*)) denote the space of all Baire-one and affine Baire-one functions on the dual unit ball B(E*), respectively. We show that there exists a separable L(1)-predual E such that there is no quantitative relation between dist(f, B(1)(B(E)*)) and dist(f, u(1)(B(E*))), where f is an affine function on B(E*). If the Banach space E satisfies some additional assumption, we prove the existence of some such dependence.
引用
收藏
页码:23 / 41
页数:19
相关论文
共 50 条
  • [1] On approximation of affine Baire-one functions
    Lukes, J
    Maly, J
    Netuka, I
    Smrcka, M
    Spurny, J
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2003, 134 (1) : 255 - 287
  • [2] On approximation of affine Baire-one functions
    J. Lukeš
    J. Malý
    I. Netuka
    M. Smrčka
    J. Spurný
    [J]. Israel Journal of Mathematics, 2003, 134 : 255 - 287
  • [3] Affine Baire-one functions on Choquet simplexes
    Spurny, J
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2005, 71 (02) : 235 - 258
  • [4] Extending Baire-one functions on compact spaces
    Karlova, Olena
    Mykhaylyuk, Volodymyr
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2020, 277
  • [5] Extending Baire-one functions on topological spaces
    Kalenda, OFK
    Spurny, J
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2005, 149 (1-3) : 195 - 216
  • [6] Extension of fragmented Baire-one functions on Lindelof spaces
    Karlova, Olena
    Mykhaylyuk, Volodymyr
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2019, 253 : 85 - 94
  • [7] Distances to spaces of Baire one functions
    Angosto, C.
    Cascales, B.
    Namioka, I.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2009, 263 (01) : 103 - 124
  • [8] Distances to spaces of Baire one functions
    C. Angosto
    B. Cascales
    I. Namioka
    [J]. Mathematische Zeitschrift, 2009, 263 : 103 - 124
  • [9] EXTENSION OF CONTINUOUS FUNCTIONS TO BAIRE-ONE FUNCTIONS
    Karlova, Olena
    [J]. REAL ANALYSIS EXCHANGE, 2010, 36 (01) : 149 - 160
  • [10] The Dirichlet problem for Baire-one functions
    Spurny, Jiri
    [J]. CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2004, 2 (02): : 260 - 271