Twice-punctured hyperbolic sphere with a conical singularity and generalized elliptic integral

被引:5
|
作者
Anderson, G. D. [1 ]
Sugawa, T. [2 ]
Vamanamurthy, M. K. [3 ]
Vuorinen, M. [4 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Tohoku Univ, Grad Sch Informat Sci, Aoba Ku, Sendai, Miyagi 9808579, Japan
[3] Univ Auckland, Dept Math, Auckland, New Zealand
[4] Univ Turku, Dept Math, Turku 20014, Finland
关键词
Hypergeometric functions; Generalized complete elliptic integrals; Conformal mapping; PLANE DOMAINS; EQUATION; METRICS;
D O I
10.1007/s00209-009-0560-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe, in terms of generalized elliptic integrals, the hyperbolic metric of the twice-punctured sphere with one conical singularity of prescribed order. We also give several monotonicity properties of the metric and a couple of applications.
引用
收藏
页码:181 / 191
页数:11
相关论文
共 3 条
  • [1] Twice-punctured hyperbolic sphere with a conical singularity and generalized elliptic integral
    G. D. Anderson
    T. Sugawa
    M. K. Vamanamurthy
    M. Vuorinen
    Mathematische Zeitschrift, 2010, 266 : 181 - 191
  • [2] On the number of nested twice-punctured tori in a hyperbolic knot exterior
    Aranda, Roman
    Ramirez-Losada, Enrique
    Rodriguez-Viorato, Jesus
    TOPOLOGY AND ITS APPLICATIONS, 2024, 351
  • [3] Generalized two-field α-attractor models from the hyperbolic triply-punctured sphere
    Babalic, Elena Mirela
    Lazaroiu, Calin Iuliu
    NUCLEAR PHYSICS B, 2018, 937 : 434 - 477