A characterization of cycle-forced bipartite graphs

被引:4
|
作者
Wang, Xiumei [1 ]
Zhang, Yipei [2 ]
Zhou, Ju [3 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[2] Zhengzhou Int Sch, Zhengzhou 450000, Henan, Peoples R China
[3] Kutztown State Univ, Dept Math, Kutztown, PA 19530 USA
基金
中国国家自然科学基金;
关键词
Bipartite graph; Hamiltonian graph; Perfect matching; Cycle-forced graph; PM-COMPACT BIPARTITE;
D O I
10.1016/j.disc.2018.06.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A forced cycle C of a graph G is a cycle in G such that G-V (C) has a unique perfect matching. A graph G is a cycle-forced graph if every cycle in G is a forced cycle. In this paper, we give a characterization of cycle-forced hamiltonian bipartite graphs. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2639 / 2645
页数:7
相关论文
共 50 条
  • [1] On the forced matching numbers of bipartite graphs
    Adams, P
    Mahdian, M
    Mahmoodian, ES
    DISCRETE MATHEMATICS, 2004, 281 (1-3) : 1 - 12
  • [2] Bipartite graphs with every matching in a cycle
    Amar, Denise
    Flandrin, Evelyne
    Gancarzewicz, Grzegorz
    Wojda, A. Pawel
    DISCRETE MATHEMATICS, 2007, 307 (11-12) : 1525 - 1537
  • [3] A characterization of weakly bipartite graphs
    Guenin, B
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, 1998, 1412 : 9 - 22
  • [4] A characterization of weakly bipartite graphs
    Guenen, B
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 83 (01) : 112 - 168
  • [5] A characterization of 1-cycle resonant graphs among bipartite 2-connected plane graphs
    Klavzar, Sandi
    Salem, Khaled
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1277 - 1280
  • [6] NULLITIES OF CYCLE-SPLICED BIPARTITE GRAPHS
    Chang, Sarula
    LI, Jianxi
    Zheng, Yirong
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2023, 39 : 327 - 338
  • [7] EDGE CONDITIONS AND CYCLE STRUCTURE IN BIPARTITE GRAPHS
    ENTRINGER, RC
    SCHMEICHEL, EF
    ARS COMBINATORIA, 1988, 26 : 229 - 232
  • [8] Isomorphism classes of bipartite cycle permutation graphs
    Kwak, JH
    Lee, J
    ARS COMBINATORIA, 1998, 50 : 139 - 148
  • [9] On Short Cycle Enumeration in Biregular Bipartite Graphs
    Blake, Ian F.
    Lin, Shu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (10) : 6526 - 6535
  • [10] A characterization of complete bipartite RAC graphs
    Didimo, Walter
    Eades, Peter
    Liotta, Giuseppe
    INFORMATION PROCESSING LETTERS, 2010, 110 (16) : 687 - 691